Математизация естествознания
Классическое естествознание, как уже говорилось выше, выросло на основе применения экспериментально-математических методов. Успешное использование математики для выражения закономерных связей и отношений любых природных объектов способствовало возникновению веры в то, что научность (истинность, достоверность) знания определяется степенью его математизации. «Книга природы написана на языке математики», — утверждал Г. Галилей. «В каждом знании столько истины, сколько есть математики», — вторил ему И. Кант. Логическая стройность, строго дедуктивный характер построений, общеобязательность выводов математики создали ей славу образца научного знания. И хотя современная математика весьма далека от идеала безупречной обоснованности и логического совершенства, ее значение для естествознания не только сохраняется, но и усиливается.
«Выгоды» естествознания от использования математики многообразны. Во многих случаях математика выполняет роль универсального языка естествознания, специально предназначенного для лаконичной и точной записи различных утверждений. Все, что можно описать языком математики, поддается выражению и на обычном языке, но изъяснение может оказаться столь длинным и запутанным, что это сильно усложнит жизнь. Математический же язык краток и компактен.
Однако главное достоинство математики, столь привлекательное для ученых-естественников, заключается в том, что она способна служить источником моделей, алгоритмических схем для связей, отношений и процессов, составляющих предмет естествознания. Конечно, любая математическая схема или модель — это «упрощающая идеализация» исследуемого объекта. Но упрощение — не только огрубление, искажение, это одновременно и выявление ясной и однозначной сути объекта, с которой легко и просто работать.
Поскольку в математических формулах и уравнениях воспроизведены некие общие соотношения свойств реального мира, они имеют обыкновение повторяться в разных его областях. На этом соображении построен такой своеобразный метод естественнонаучного познания, как математическая гипотеза. Вней идут не от содержания гипотезы к математическому ее оформлению, а наоборот, пробуют к уже готовым математическим формам подобрать некое конкретное содержание. Для этой цели из смежных об-
74
ластей науки выбирается какое-нибудь подходящее уравнение, в него подставляются величины другой природы (при этом возможно и частичное видоизменение самого уравнения) и производится проверка на совпадение с «поведением» исследуемого объекта.
Конечно, сфера применения такой математической «игры» ограничена теми родственными науками, где уже существует достаточно богатый математический арсенал. Но там, где она применима (например, в физике), ее эвристические возможности весьма велики. Так, с помощью этого метода были описаны основные законы квантовой механики. Австрийский физик Э. Шредингер, поверив в волновую гипотезу движения элементарных частиц, сумел найти соответствующее уравнение, которое формально ничем не отличается от хорошо известного классической физике уравнения колебаний нагруженной струны. Дав членам этого уравнения совершенно иную интерпретацию (квантово-механическую), он в итоге сумел получить волновой вариант квантовой механики, в котором знаменитое уравнение заняло центральное место.
Роль математики в современном естествознании трудно переоценить. Достаточно сказать, что ныне новая теоретическая интерпретация какого-либо явления считается полноценной, если удается создать математический аппарат, отражающий основные закономерности этого явления. Однако не следует думать, что все естествознание в итоге будет сведено к математике. Построение различных формальных систем, моделей, алгоритмических схем — лишь одна из сторон развития научного знания. Развивается же наука прежде всего как содержательное, т.е. неформализованное, неалгоритмизированное знание. Процесс выдвижения, обоснования и опровержения гипотез, организацию экспериментов, научную интуицию и гениальные догадки в процессе познания формализовать не удается. «Логики открытий» не существует.
3.5. Принципиальные особенности современной естественно-научной картины мира
Словосочетание «научная картина мира» подразумевает некую аналогию между совокупностью описывающих реальный мир научных абстракций и этаким большущим живописным полотном, на котором художник компактно разместил все предметы мира. Как и все прочие аналогии, эта довольно приблизительно отражает суть дела, но в целом удачно.
Удачные же аналогии обладают удивительным свойством — их можно развернуть дальше, сделать подробнее, и при этом сходство с объектом аналогии сохранится! Попробуем проделать эту операцию с нашими «картинами мира».
Настоящие живописные полотна имеют один существенный недостаток: степень сходства с изображаемым объектом порой бывает далека от желаемой. В стремлении добиться максимально точного изображения человечество изобрело фотографию. Точность повысилась, но заметное неудобство стала причинять статичность, безжизненность фотографии. Человечество подумало и изобрело кинематограф — изображаемые объекты ожили, задвигались, возможности адекватного воспроизведения реальности увеличились. Любопытно, но последовательно сменявшие друг друга научные картины мира (античная, ньютоновская и современная) претерпели очень похожие превращения.
Античный ученый мир рисовал свою «картину» с большой долей фантазии и вьщумки, сходство же с изображаемым было минимальным. Ньютоновская картина мира стала суше, строже и во много раз точнее (этакая черно-белая фотография, местами, правда, неясная). Нынешняя научная картина мира «оживила» неподвижную доселе Вселенную, обнаружила в каждом ее фрагменте эволюцию, развитие! Описание истории Вселенной со всем ее содержимым потребовало уже не фотографии, а киноленты, каждый кадр которой соответствовал бы определенному этапу ее развития. Это — главная принципиальная особенность современной естественно-научной картины мира — принцип глобального эволюционизма.
3.5.1. Глобальный эволюционизм
Появление принципа глобального эволюционизма означает, что в современном естествознании утвердилось убеждение в том, что материя, Вселенная в целом и во всех ее элементах не могут существовать вне развития.
Это принципиально новый для естествознания взгляд на вещи, хотя сама идея эволюции родом из XIX в. Наиболее сильно она прозвучала, как известно, в учении Ч. Дарвина о происхождении видов. (Справедливости ради надо отметить, что Дарвину принадлежит не столько идея эволюции, сколько предложенный механизм ее осуществления; эволюционные представления обсуждались и раньше.) Данная концепция легла в основу рож-
76
давшейся теоретической биологии. Эволюционное учение оказало сильнейшее влияние на умы современников Ч. Дарвина, однако перебраться через пропасть, отделявшую науки о живом от наук о неорганическом мире, в XIX в. оно так и не сумело, ограничив свое действие растительным и животным миром. Пожалуй, лишь в социологии была сделана попытка прямого переноса дарвиновских идей (Г. Спенсер), но это было уже за пределами естествознания. Классические же фундаментальные науки, составлявшие основу ньютоновской картины мира, остались совершенно не затронутыми ни буквой, ни духом эволюционного учения. Вселенная в целом представлялась равновесной и неизменяемой. А поскольку время ее существования бесконечно, то вполне вероятен шанс появления в результате случайных локальных возмущений наблюдаемых неравновесных образований с заметной организацией своих структур (галактик, планетных систем и т.д.).
Точно таким же «противоестественным» явлением, или артефактом (от лат. arte — искусственно и factus — сделанный), выглядело появление жизни на нашей планете. И по всему выходило, что такого рода «отклонения» в существовании Вселенной — явления временные и со всем остальным космосом никак не связанные. Таков был довольно грустный итог естественнонаучной картины мира в XIX в.
В XX в. все радикально поменялось. Первую крупную брешь в антиэволюционном настрое классической физики пробило в начале 20-х годов открытие расширения Вселенной, или иначе — ее нестационарности. Но если Вселенная расширяется, галактики разбегаются друг от друга, то встает вопрос о силах, сообщивших галактикам начальную скорость и необходимую для этого энергию. Современное (конца XX в.) естествознание считает, что оно может ответить на этот вопрос. Таким ответом является теория Большого взрыва, воспроизводящая процессы зарождения нашей Вселенной из некоего исходного состояния и ее последующей эволюции, приводящей в конечном счете к ныне наблюдаемому облику. Эта теория более или менее прочно утвердилась в естествознании в 70-е годы (хотя сама идея была предложена еще в 40-е).
Не вдаваясь в детали (они будут изложены в следующих главах), подчеркнем радикальное обновление наших представлений об устройстве мироздания: Вселенная нестационарна, она имела начало во времени, следовательно, она исторична, т.е. эволюционирует во времени. И эту 15-миллиардолетнюю эволюцию в принципе можно реконструировать!
Таким образом, идея эволюции прорвалась в физику и космологию. Но не только в них. В последние десятилетия благосклонное отношение к эволюционным представлениям начала проявлять и химия.
До сей поры проблема «происхождения видов» вещества химиков не волновала. Однако ситуация изменилась, когда концепция Большого взрыва указала на историческую последовательность появления во Вселенной различных элементов. Ведь в первые мгновения жизни Вселенной в ней было так горячо, что ни один из компонентов вещества (атомы, молекулы) не мог существовать. Лишь в конце первых трех минут образовалось небольшое количество ядерного материала (ядер водорода и гелия), а первые «нормальные», целые атомы легких элементов возникли через несколько сотен тысяч лет после взрыва. Так что звезды первого поколения начинали жизнь с ограниченным набором легких элементов, из которых в результате самопроизвольного синтеза и вышло впоследствии все разнообразие таблицы Менделеева. Так что в ней, возможно, зафиксирована не только структурная упорядоченность химических элементов, но и реальная история их появления.
Еще более любопытная картина обнаруживается при наложении идеи эволюции на процесс образования сложных молекулярных соединений. Привычная нам дарвиновская эволюция показывает непрерывное нарастание сложности организации растительных и животных организмов (от одноклеточных до человека) через механизм естественного отбора. Миллионы видов были отбракованы этим механизмом, остались лишь самые эффективные. Поразительно, но нечто похожее, по-видимому, происходило и тогда, когда природа только «готовилась» к порождению жизни. Об этом говорит тот факт, что из более чем ста известных химических элементов основу всего живого составляют только шесть: углерод, водород, кислород, азот, фосфор и сера. Их общая доля в живых организмах составляет 97,4%. Еще 12 элементов дают примерно 1,6%.
Мир собственно химических соединений не менее диспропорционален. Ныне известно около 8 млн химических соединений, 96% из них — это органические соединения, составленные из все тех же 6—18 элементов. Из всех же остальных химических элементов природа почему-то создала не более чем 300 тыс. неорганических соединений1. Столь разительные несоответствия невоз-
Кузнецов В.И. и др. Естествознание. — М.: Агар, 1996. — С. 241, 243.
78
можно объяснить различной распространенностью химических элементов на Земле или даже в космосе. Она совсем другая. Так что налицо совершенно очевидный «отбор» химических элементов, свойства которых (прочность и энергоемкость образуемых ими химических связей, легкость их перераспределения и т.п.) «дают преимущество» при переходе на более высокий уровень сложности и упорядоченности вещества.
Действие механизма отбора просматривается и на следующем «витке» эволюции: из многих миллионов органических соединений в построении биосистем заняты лишь несколько сотен, из ста известных аминокислот для составления белковых молекул живых организмов природой использовано только двадцать и т.д. На такого рода факты и опираются представления о «предбио-логической эволюции», т.е. эволюции химических элементов и соединений.
Уже сформулированы первые теории химической эволюции как саморазвития каталитических систем. Конечно, в этой области еще очень много неясного, малообоснованного и т.д., но важен сам факт «обращения» современной химии в «эволюционную веру».
В XX в. эволюционное учение интенсивно развивалось и в рамках самой его прародительницы — биологии. Современный эволюционизм в научных дисциплинах биологического профиля предстает как многоплановое учение, ведущее поиск закономерностей и механизмов эволюции сразу на многих уровнях организации живой материи: молекулярном, клеточном, организменном, популяционном и даже биогеоценотическом. Наиболее выдающиеся успехи достигнуты, конечно, на молекулярно-генетическом уровне: расшифрован генетический механизм передачи наследуемой информации, выяснены роль и структура ДНК и РНК, найдены методы определения последовательностей нуклеотидов в них и т.п. Синтетическая теория эволюции (синтез генетики и дарвинизма) развела процессы микроэволюции (на уровне популяций) и макроэволюции (на надвидовых уровнях), установила в качестве элементарной эволюционной единицы популяцию и т.д. Таким образом, именно дарвиновская концепция эволюции стала тем основным руслом, в которое вливаются многочисленные потоки разнородного специализированного биологического знания.
Идея эволюции праздновала успех и в других областях естествознания: в геологии, например, окончательно утвердилась концепция дрейфа континентов; а такие науки, как экология, биогеохимия, антропология, были изначально «эволюционны».
Таким образом, современное естествознание вправе выбросить лозунг: «Все существующее есть результат эволюции!». Укорененность в нынешней научной картине мира представления о всеобщем характере эволюции является ее главной отличительной чертой.
В биологии концепция эволюции имеет давние устойчивые традиции. А вот физика и химия к таким идеям только привыкают. Облегчить этот процесс, видимо, призвано новое междисциплинарное научное направление (70-х годов рождения) — синергетика. Она претендует на то, что способна описать движущие силы эволюции любых объектов нашего мира.
3.5.2. Синергетика — теория самоорганизации
Появление синергетикив современном естествознании инициировано, скорее всего, подготовкой глобального эволюционного синтеза всех естественно-научных дисциплин. Эту тенденцию в немалой степени сдерживало такое обстоятельство, как разительная асимметрия процессов деградации и развития в живой и неживой природе. Дело в том, что в классической науке (XIX в.) господствовало убеждение, что материи изначально присуща тенденция к разрушению всякой упорядоченности, стремление к исходному равновесию, что в энергетическом смысле и означало неупорядоченность, т.е. хаос. Такой взгляд на вещи сформировался под воздействием образцовой физической дисциплины — равновесной термодинамики.
Эта наука занимается процессами взаимопревращения различных видов энергии. Ею установлено, что взаимные превращения тепла и работы неравнозначны. Работа может полностью превратиться в тепло трением или другими способами, а вот тепло полностью превратить в работу принципиально невозможно. Это означает, что во взаимопереходах одних видов энергии в другие существует выделенная самой природой направленность!Знаменитое второе начало (закон) термодинамики в формулировке немецкого физика Р. Клаузиуса звучит так: «Теплота не переходит самопроизвольно от холодного тела к более горячему».
Закон сохранения и превращения энергии (первое начало термодинамики) в принципе не запрещает такого перехода, лишь бы количество энергии сохранялось в прежнем объеме. Но в реальности такого никогда не происходит. Вот эту-то односторонность, однонаправленность перераспределения энергии в замкнутых системах и подчеркивает второе начало.
Для отражения этого процесса в термодинамику было введено новое понятие — энтропия.Под энтропией стали понимать меру беспорядка системы.Более точная формулировка второго начала термодинамики приняла такой вид: «При самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает».
Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это наиболее простое состояние системы, или состояние термодинамического равновесия, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно полному хаосу.
Общий итог достаточно печален: необратимая направленность процессов преобразования энергии в изолированных системах рано или поздно приведет к превращению всех видов энергии в тепловую, которая рассеется, т.е. в среднем равномерно распределится между всеми элементами системы, что и будет означать термодинамическое равновесие,или полный хаос.Если наша Вселенная замкнута, то ее ждет именно такая незавидная участь. Из хаоса, как утверждали древние греки, она родилась, в хаос же, как предполагает классическая термодинамика, и возвратится.
Возникает, правда, любопытный вопрос: если Вселенная эволюционирует только к хаосу, то как же она могла возникнуть и сорганизоваться до нынешнего упорядоченного состояния? Однако этим вопросом классическая термодинамика не задавалась, ибо формировалась в эпоху, когда нестационарный характер Вселенной не обсуждался. В это время единственным немым укором термодинамике служила дарвиновская теория эволюции. Ведь предполагаемый этой теорией процесс развития растительного и животного мира характеризовался его непрерывным усложнением, нарастанием высоты организации и порядка. Живая природа почему-то стремилась прочь от термодинамического равновесия и хаоса. Эта явная «нестыковка» законов развития неживой и живой природы по меньшей мере удивляла.
Удивление это многократно возросло после замены модели стационарной Вселенной на модель развивающейся Вселенной, в которой ясно просматривалось нарастающее усложнение организации материальных объектов — от элементарных и субэлементарных частиц в первые мгновения после Большого взрыва до на-
блюдаемых ныне звездных и галактических систем. Ведь если принцип возрастания энтропии столь универсален, как же могли возникнуть такие сложные структуры? Случайным «возмущением» в целом равновесной Вселенной их уже не объяснить. Стало ясно, что для сохранения непротиворечивости общей картины мира необходимо постулировать наличие у материи в целом не только разрушительной, но и созидательной тенденции. Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться.
Стоит отметить, что постулат о способности материи к саморазвитию в философию был введен достаточно давно. А вот его необходимость в фундаментальных естественных науках (физике, химии) начинает осознаваться только сейчас. На волне этих проблем и возникла синергетика — теория самоорганизации. Ее разработка началась несколько десятилетий назад, и в настоящее время она развивается по нескольким направлениям: это синергетика (Г. Хакен), неравновесная термодинамика (И. Пригожин) и др. Не вдаваясь в детали и оттенки развития этих направлений, охарактеризуем общий смысл предлагаемого ими комплекса идей, называя их синергетическими (термин Г. Хакена).
Главный мировоззренческий сдвиг, произведенный синергетикой, можно выразить следующим образом:
• процессы разрушения и созидания, деградации и эволюции во Вселенной по меньшей мере равноправны;
• процессы созидания (нарастания сложности и упорядоченности) имеют единый алгоритм независимо от природы систем, в которых они осуществляются.
Таким образом, синергетика претендует на открытие некоего универсального механизма, с помощью которого осуществляется самоорганизация как в живой, так и неживой природе. Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее к более сложным и упорядоченным формам организации. Отсюда следует, что объектом синергетики могут быть отнюдь не любые системы, а только те, которые удовлетворяют по меньшей мере двум условиям:
• они должны быть открытыми, т.е. обмениваться веществом или энергией с внешней средой;
• они должны также быть существенно неравновесными, т.е. находиться в состоянии, далеком от термодинамического равновесия.
82
Но именно такими являются большинство известных нам систем. Изолированные системы классической термодинамики — это определенная идеализация, в реальности такие системы исключение, а не правило. Сложнее со всей Вселенной в целом: если считать ее открытой системой, то что может служить ее внешней средой? Современная физика полагает, что такой средой для нашей вещественной Вселенной является вакуум.
Итак, синергетика утверждает, что развитие открытых и сильно неравновесных систем протекает путем нарастающей сложности и упорядоченности. В цикле развития такой системы наблюдаются две фазы:
1. Период плавного эволюционного развития с хорошо предсказуемыми линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому состоянию.
2. Выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности.
Важная особенность: переход системы в новое устойчивое состояние неоднозначен. Достигшая критических параметров система из состояния сильной неустойчивости как бы «сваливается» в одно из многих возможных новых для нее устойчивых состояний. В этой точке (ее называют точкой бифуркации) эволюционный путь системы как бы разветвляется, и какая именно ветвь развития будет выбрана — решает случай! Но после того как «выбор сделан» и система перешла в качественно новое устойчивое состояние, назад возврата нет. Процесс этот необратим. А отсюда, между прочим, следует, что развитие таких систем имеет принципиально непредсказуемый характер. Можно просчитать варианты ветвления путей эволюции системы, но какой именно из них будет выбран случаем, однозначно спрогнозировать нельзя.
Самый популярный и наглядный пример образования структур нарастающей сложности — хорошо изученное в гидродинамике явление, названное ячейками Бенара. При подогреве жидкости, находящейся в сосуде круглой или прямоугольной формы, между нижним и верхним ее слоями возникает некоторая разность (градиент) температур. Если градиент мал, то перенос тепла происходит на микроскопическом уровне и никакого макроскопического движения не происходит. Однако при достижении им некоторого критического значения в жидкости внезапно (скачком) возникает макроскопическое движение, образующее четко выраженные структуры в виде цилиндрических ячеек. Свер-
ху такая макроупорядоченность выглядит как устойчивая ячеистая структура, похожая на пчелиные соты.
Это хорошо знакомое всем явление с позиций статистической механики совершенно невероятно. Ведь оно свидетельствует о том, что в момент образования ячеек Бенара миллиарды молекул жидкости, как по команде, начинают вести себя скоординированно, согласованно, хотя до этого пребывали в совершенно хаотическом движении. Создается впечатление, что каждая молекула «знает», что делают все остальные, и желает двигаться в общем строю. (Само слово «синергетика», кстати, как раз и означает «совместное действие».) Классические статистические законы здесь явно не работают, это явление иного порядка. Ведь даже если такая «правильная» и устойчиво «кооперативная» структура и образовалась бы случайно, что почти невероятно, она тут же распалась бы. Но она не распадается при поддержании соответствующих условий (приток энергии извне), а устойчиво сохраняется. Значит, возникновение таких структур нарастающей сложности — не случайность, а закономерность.
Поиск аналогичных процессов самоорганизации в других классах открытых неравновесных систем вроде бы обещает быть успешным: механизм действия лазера, рост кристаллов, химические часы (реакция Белоусова — Жаботинского), формирование живого организма, динамика популяций, рыночная экономика, наконец, в которой хаотичные действия миллионов свободных индивидов приводят к образованию устойчивых и сложных макроструктур. Все это примеры самоорганизации систем самой различной природы.
Синергетическая интерпретация такого рода явлений открывает новые возможности и направления их изучения. В обобщенном виде новизну синергетического подхода можно выразить следующими позициями.
• Хаос не только разрушителен, но и созидателен, конструктивен; развитие осуществляется через неустойчивость (хаотичность). Порядок и хаос не исключают, а дополняют друг друга: порядок возникает из хаоса.
• Линейный характер эволюции сложных систем, к которому привыкла классическая наука, не правило, а скорее исключение; развитие большинства таких систем носит нелинейный характер. А это значит, что для сложных систем всегда существует несколько возможных путей эволюции.
84
• Развитие осуществляется через случайный выбор одной из нескольких разрешенных возможностей дальнейшей эволюции в точках бифуркации. Следовательно, случайность — не досадное недоразумение, она встроена в механизм эволюции. А еще это означает, что нынешний путь эволюции системы может быть и не лучше отвергнутых случайным выбором.
Синергетика родом из физических дисциплин — термодинамики, радиофизики, но ее идеи носят междисциплинарный характер. Они подводят базу под совершающийся в естествознании глобальный эволюционный синтез. Поэтому в синергетике видят одну из важнейших составляющих современной научной картины мира.
3.5.3. Общие контуры современной естественно-научной картины мира
Мир, в котором мы живем, состоит из разномасштабных открытых систем, развитие которых подчиняется некоторым общим закономерностям. При этом он имеет свою долгую историю, которая в общих чертах известна современной науке. Вот как выглядит хронология наиболее важных событий этой истории:
15 млрд лет назад — Большой взрыв
3 мин спустя — образование вещественной осно-
вы Вселенной (фотоны, нейтрино и антинейтрино с примесью ядер водорода, гелия и электронов)
Через несколько сотен — появление атомов (легких
тысяч лет элементов)
14—11 млрд лет назад — образование разномасштабных
структур (галактик), появление звезд первого поколения, образование атомов тяжелых элементов
5 млрд лет назад — рождение Солнца
4,6 млрд лет назад — образование Земли
3,8 млрд лет назад — зарождение жизни
450 млн лет назад — появление растений
150 млн лет назад — появление млекопитающих
2 млн лет назад — начало антропогенеза
Подчеркнем, что современной науке известны не только «даты», но во многом и сами механизмы эволюции Вселенной от
Большого взрыва до наших дней. Это фантастический результат. Причем наиболее крупные прорывы к тайнам истории Вселенной осуществлены во второй половине нашего века: предложена и обоснована концепция Большого взрыва, построена кварковая модель атома, установлены типы фундаментальных взаимодействий, сформулированы первые теории их объединения и т.д. Мы обращаем внимание в первую очередь на успехи физики и космологии потому, что именно эти фундаментальные науки формируют общие контуры научной картины мира.
Картина мира, рисуемая современным естествознанием, необыкновенно сложна и проста одновременно. Сложна, потому что способна поставить в тупик человека, привыкшего к согласующимся со здравым смыслом классическим научным представлениям. Идеи начала времени, корпускулярно-волнового дуализма квантовых объектов, внутренней структуры вакуума, способной рождать виртуальные частицы, — эти и другие подобные новации придают нынешней картине мира немножко «безумный» вид. (Впрочем, это преходяще: когда-то ведь и мысль о шарообразности Земли тоже выглядела совершенно «безумной»).
Вместе с тем эта картина мира величественно проста, стройна и даже элегантна. Подобные качества ей придают в основном уже рассмотренные нами ведущие принципы построения и организации современного научного знания:
• системность,
• глобальный эволюционизм,
• самоорганизация,
• историчность.
Данные принципы построения научной картины мира в целом соответствуют фундаментальным закономерностям существования и развития самой Природы.
Системностьозначает воспроизведение наукой того факта, что наблюдаемая Вселенная предстает как наиболее крупная из всех известных нам систем, состоящая из огромного множества элементов (подсистем) разного уровня сложности и упорядоченности.
Под «системой» обычно понимают некое упорядоченное множество взаимосвязанных элементов. Эффект системности обнаруживается в появлении у целостной системы новых свойств, возникающих в результате взаимодействия элементов (атомы водорода и кислорода, например, объединенные в молекулу воды, радикально меняют свои обычные свойства). Другой важной ха-
86
рактеристикой системной организации является иерархичность, субординация — последовательное включение систем нижних уровней в системы более высоких уровней.
Системный способ объединения элементов выражает их принципиальное единство: благодаря иерархичному включению систем разных уровней друг в друга (по принципу матрешки) любой элемент любой системы оказывается связан со всеми элементами всех возможных систем. (Например: человек — биосфера — планета Земля — Солнечная система — Галактика и т.д.) Именно такой, принципиально единый, характер демонстрирует нам окружающий мир. Подобным же образом организуется, соответственно, как научная картина мира, так и создающее ее естествознание. Все его части ныне теснейшим образом взаимосвязаны; сейчас практически нет ни одной «чистой» науки, все пронизано и преобразовано физикой и химией.
Глобальный эволюционизм— это признание невозможности существования Вселенной и всех порождаемых ею менее масштабных систем вне развития, эволюции. Эволюционирующий характер Вселенной также свидетельствует о принципиальном единстве мира, каждая составная часть которого есть историческое следствие глобального эволюционного процесса, начатого Большим взрывом.
Самоорганизация— это наблюдаемая способность материи к самоусложнению и созданию все более упорядоченных структур в ходе эволюции. Механизм перехода материальных систем в более сложное и упорядоченное состояние, по-видимому, сходен для систем всех уровней.
Эти принципиальные особенности современной естественнонаучной картины мира и определяют в главном ее общий контур, а также сам способ организации разнообразного научного знания в нечто целое и последовательное.
Однако у нее есть и еще одна особенность, отличающая ее от прежних вариантов. Она заключается в признании историчности, а следовательно, принципиальной незавершенности настоящей, да и любой другой научной картины мира. Та, которая есть сейчас, порождена как предшествующей историей, так и специфическими социокультурными особенностями нашего времени. Развитие общества, изменение его ценностных ориентаций, осознание важности исследования уникальных природных систем, в которые
составной частью включен сам человек, меняет стратегию научного поиска, само отношение человека к миру.
Но ведь развивается и Вселенная. Конечно, развитие общества и Вселенной осуществляется в разных темпоритмах. Но их взаимное наложение делает идею построения окончательной, завершенной, абсолютно истинной научной картины мира практически неосуществимой.
Итак, мы попытались отметить некоторые принципиальные особенности современной естественно-научной картины мира. Это всего лишь ее общий контур, абрис, набросав который, можно приступать к более детальному знакомству с конкретными концептуальными новшествами современного естествознания. О них будет рассказано в следующих главах.
Вопросы для самоконтроля
1. Что такое парадигма?
2. Опишите содержание естественно-научной революции конца XIX - начала XX в.
3. Каковы основные закономерности развития науки?
4. В чем проявляются дифференциация и интеграция научного знания?
5. Что такое «математическая гипотеза»?
6. Был этот мир глубокой тьмой окутан. Да будет свет! И вот явился Ньютон. Но Сатана не долго ждал реванша.
Пришел Эйнштейн — и стало все, как раньше.
(С.Я. Маршак) Над какой особенностью научного познания иронизирует автор?
7. В чем суть принципа глобального эволюционизма? Как он проявляется?
8. Опишите основные идеи синергетики. В чем заключается новизна синергетического подхода?
9. Назовите принципиальные особенности современной естественно-научной картины мира.
Библиографический список
1. Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. — М.: Эдиториал УРСС, 2001.
2. Кузнецов В.И., Идлис Г.М., Гущина В.Н. Естествознание. — М.: Агар, 1996.
3. Кун Т. Структура научных революций. — М.: Прогресс, 1975.
4. Лакатос И. Методология научных исследовательских программ // Вопросы философии. — 1995. — №4.
5. Ровинский Р.Е. Развивающаяся Вселенная. — М., 1995.
6. Синергетическая парадигма. Многообразие поисков и подходов. — М.: Прогресс-Традиция, 2000.
7. Современная философия науки. — М.: Логос, 1996.
8. Философия и методология науки. — М.: Аспект Пресс, 1996.
Глава 4
Дата добавления: 2015-12-17; просмотров: 715;