Акустическое оформление
Передняя и задняя поверхности колеблющегося поршня излучают колебания в противофазе: когда передняя поверхность в момент времени t1 создает сжатие среды, то противоположная поверхность поршня, в этот же момент t1, создает разрежение.
Сжатие и разрежение распространяются в разные стороны (Рис.18.6). При определенных условиях, огибая поршень, волны интерферируют с колебаниями возникшими с противоположной стороны (фазы) и их сумма стремится к нулю. Это явление называют - акустическим коротким замыканием (АКЗ). Возникновение АКЗ уменьшает отдачу акустической мощности излучателя (поршня) в области тех частот, при которых длина излучаемой волны велика по сравнению с размерами поршня (условия дифракции). Это явление возникает на низких частотах НЧ звуковой волны.
Чтобы избежать АКЗ на низких частотах, необходимо установить экран, чтобы колебания из области сжатия не огибали поршень и исключили явление интерференции. Экран устанавливается в сочетании с излучателем. Такой прием получил название акустического экранного оформления (оформление). Простейшим видом оформления является щит (Рис.18.7). Чтобы полностью устранить АКЗ, необходимо установить щит, у которого линейные размеры плоскости были больше половины длины звуковой НЧ волны λ :
d > λ/2; (6.1.1)Стандартный акустический экран по ГОСТ 16122-84 имеет размер 1350 х 1650 м.
Рис 18.7
Закрытый ящик (ЗЯ, Closed Box) это оформление второго порядка (рис.6.1.3 А и рис. 6.1.4). По сравнению с другими видами нагруженного оформления менее чувствителен к отклонениям характеристик. Основные его плюсы : прекрасная импульсная характеристика.Это теоретически позволяет получить плоскую АЧХ. Недостаток = низкий КПД, что требует повышенной мощности усилителя, и повышенный уровень четных гармоник из-за несимметричной нагрузки диффузора.
Рис 18.8
А – закрытый ящик, Б – фазоинвертор, В – пассивный излучатель
Частота резонанса и полная добротность головки при установке в закрытый ящик объемом Vc, соизмеримым с эквивалентным Vas, увеличиваются. Таким образом, при установке головки в ЗЯ с объемом, равным эквивалентному, ее резонансная частота и добротность увеличиваются в 1,41 раза, в ящике объемом 0,5Vas = в 1,73 раза и так далее.
Рис 18.9
Следующий по распространенности тип акустического оформления – фазоинвертор. Для работы в фазоинверторе подходят динамики, у которых показатель Fs/Qts составляет 90 и больше. Из всех возможных конструкций систем двойного действия наибольшее распространение получил фазоинвертор (ФИ, Vented Box, Ported Box, Bass Reflex). Это резонансная система. Заключенная в ФИ масса воздуха на частоте его настройки ведет себя подобно диффузору, являясь источником звуковых колебаний. Пассивный излучатель - это разновидность ФИ, в котором масса воздуха в туннеле заменена массой подвижной системы пассивного излучателя В качестве пассивного излучателя чаще всего используют обычную динамическую головку, иногда с удаленной магнитной системой.
Рис.18.10
Конструктивно он выполнен в виде закрытого ящика с двумя отверстиями
В одном отверстии размещается излучатель (поршень), другое отверстие свободное, и имеет конструкцию в виде небольшой трубы объемом V. Частота фазоинвертора ƒф, (Рис.18.10).
При медленных колебаниях (8Гц - 10Гц) пружина Св (Рис.18.10). соединяющая обе массы m, не успевает деформироваться, так как у нее большое упругое сопротивление z :
z=1/(ω·Св);(18.1)В результате обе массы mп и mв двигаются с одинаковой фазой. При этом волна, излучаемая отверстием, сдвинута на 180o по фазе по сравнению с волной, излучаемой поршнем. Повышение частоты приводит к уменьшению упругого сопротивления воздуха в ящике и пружина Св начинает деформироваться. В результате между колебаниями обоих масс mп и mв возникает фазовый сдвиг, возрастающий с повышением частоты и достигающий на частоте резонанса ящика 180o. Таким образом, воздух в отверстии и поршень колеблются в противофазе, а волны, излучаемые ими, будут синфазными иинтерферируя усиливают друг друга.
Частоту резонанса фазоинвертора ƒф, как правило, выбирают равной частоте резонанса ƒ0 головки (поршня), т.е. в области НЧ рабочего диапазона (Рис.18.10).
При дальнейшем увеличении частоты излучение звука отверстием не происходит, так как инерционное сопротивление воздуха в отверстии ω·mв становится чрезвычайно большим. При этих частотах фазоинвертор аналогичен закрытому ящику. Внутренние поверхности фазоинвертора также, как и ящика, покрывают звукопоглощающим материалом.
Рисунок 18.11
На схеме рис. 18.11 усилитель мощности, являющийся для громкоговорителя источником сигнала, с напряжением открытой цепи и выходным сопротивлением преобразован в генератор напряжений, имитирующий генератор с выходным значением акустического давления, после генератора полное сопротивление, представляющее собой сумму активного сопротивления звуковой катушки и выходного сопротивления усилителя. Mas- акустическая масса подвижной системы, присоединенная масса воздуха с передней и тыльной стороны диофрагмы. Саs- акустическая гибкость подвесов. Ras- акустическое сопротивление подвижной системы. Mav- акустическая масса воздуха в фазоинверсной трубе.
Акустическая нагрузка. Диффузор динамической головки в закрытом оформлении испытывает существенно отличающееся сопротивление при движении вперед и назад. Асимметричность нагрузки является потенциальным источником нелинейных искажений. Поэтому еще в середине 70-х годов появились акустические системы, в конструкции которых этот недостаток устранялся введением дополнительной акустической нагрузки для передней поверхности диффузора. Аналогичные решения можно использовать и для ограничения амплитуды колебаний диффузора в системах двойного действия. Надежных методик расчета акустической нагрузки нет, необходим эксперимент.
Рисунок 18.12
Акустическую нагрузку можно реализовать различными способами. В простейшем случае (рис.18.12 А) перед диффузором размещается отражающая поверхность (Reflex Body). Однако такое решение ухудшает чувствительность АС и ее АЧХ на средних частотах. В некоторых современных конструкциях для улучшения АЧХ и диаграммы направленности служит тело вращения чечевицеобразной формы (рис.18.12 Б). С этой же целью можно использовать отражающую поверхность, расположенную под углом (рис.18.12 В). Клиновая нагрузка отчасти играет роль короткого рупора, что способствует акустическому усилению определенного диапазона частот. Как дальнейшее развитие этой идеи появились акустические системы с резонатором (рис.18.12 Г). После этого оставалось сделать только один шаг к конструкции полосовых громкоговорителей.
Полосовые громкоговорители. Общая черта всех конструкций полосовых громкоговорителей (bandpass) - наличие одной или нескольких резонансных камер и установка динамической головки внутри корпуса. Поскольку эти системы уже не являются системами прямого излучения, их расчет и изготовление весьма сложны. Поэтому распространение получили в основном конструкции четвертого порядка (рис. 18.13 А). Полосовые громкоговорители шестого (рис.18.13.Б,В) и восьмого (рис.18.13.Г,Д) порядка встречаются реже.
Рисунок 18.13
Полосовые громкоговорители:
А – закрытый ящик-резонатор,
Б – фазоинвертор двойного действия,
В – фазоинвертор последовательного действия,
Г – фазоинвертор последовательного двойного действия,
Д – фазоинвертор-резонатор последовательного двойного действия
Полосовое акустическое оформление используется исключительно для сабвуферов. Достоинство полосового громкоговорителя - высокий КПД, импульсные же и фазовые характеристики весьма посредственны и ухудшаются с ростом порядка. Для всех конструкций, кроме закрытого ящика-резонатора, желательно применение фильтра инфра-низких частот (как и для классического фазоинвертора).
Помимо рассмотренных конструкций полосовых громкоговорителей с одной динамической головкой известны также АС, имеющие две головки. Конструкция получена объединением двух одинаковых полосовых систем. Одна из камер становится общей, ее объем при этом удваивается. На (рис.18.14 А,Б)показаны два варианта оформления четвертого порядка, на рис.18.14 В – шестого.
Одно из достоинств подобных конструкций состоит в том, что они не требуют специального монофонического канала усиления: каждую головку можно подключить к своему каналу стереофонического УМЗЧ.
Рисунок 18.14
Сдвоенные головки. Практически во всех рассмотренных конструкциях можно использовать сдвоенные динамические головки. Для этого однотипные головки устанавливаются одним из показанных на рис.18.15 способов. Получившуюся конструкцию можно рассматривать как новую низкочастотную динамическую головку с совершенно другими свойствами. Теоретические значения полной добротности и частоты основного механического резонанса получившейся системы рассчитываются как среднее геометрическое от соответствующих величин исходных головок. Поскольку при сдваивании обычно используются однотипные головки с достаточно близкими параметрами, можно считать, что эти параметры практически не изменятся. Однако заключенный между диффузорами головок связанный объем воздуха увеличивает эффективную массу подвижной системы, понижая частоту основного механического резонанса головок больших размеров до 80% от исходной.
Рисунок 18.15 Установка сдвоенных головок:
А - лицом к лицу, Б - спина к спине,
В - в затылок, Г - со связанным объемом
До настоящего времени основным материалом для изготовления корпусов акустических систем остается древесина. При этом учитывается, что дерево обладает собственными акустическими свойствами, а внесение корпусом собственных призвуков нежелательно. С ними борются как специальными гасящими конструкциями, так и применением вместо сплошной "чистой" древесины древесно-стружечной плиты (ДСП), столь нелюбимой нами в мебели. ДСП не имеет какой-либо структуры (каковой являются линейные волокна дерева), поэтому меньше подвержена резонансам. Снаружи ДСП отделывается разными покрытиями, в том числе имитирующими дерево (фанеровка), но эта отделка носит чисто декоративный характер.
Наряду с традиционным использованием дерева продолжаются попытки использования иных материалов - пластика, металла, камня. Существует довольно большое число пластиковых акустических систем, как правило, небольшого размера (ближнего поля), звучащих достаточно приемлемо и дешевых в силу технологичности изготовления корпусов. Однако попытки создания пластмассовых корпусов акустических систем большого размера пока не увенчались успехом (с точки зрения акустики, разумеется, а не "ящикостроения"). Дело в том, что большой корпус должен обладать и большой массой, иначе в нем начинают "гулять" такие резонансы, что их подавление обходится гораздо дороже, чем, например, в деревянном корпусе.
Довольно эффективны и в последнее время популярны металлические корпуса акустических систем. Это связано, в частности, с широким использованием в студийной практике компьютеров с традиционными электронно-лучевыми кинескопами мониторов, на которые плохо влияют магниты динамиков, если те находятся слишком близко. Металлический корпус акустической системы является в данном случае экраном. Кроме того, металл технологичен в изготовлении и обеспечивает необходимую по акустическим требованиям жесткость.
Интересные результаты дает и использование камня. Тут о технологичности изготовления корпусов говорить не приходится, но акустические результаты оказываются превосходны. Впрочем, проблема решается компромиссом - применением синтетического материала, позволяющего соединить простоту производства корпуса с массивностью и жесткостью камня.
Однако, несмотря на активные поиски новых материалов, основным остается "старое доброе" дерево.
Долгое время традиционное расположение динамиков на передней стенке корпуса в виде "снеговика" (внизу низкочастотный громкоговоритель, в середине - среднечастотный, и наверху - высокочастотный) устраивало пользователей. Однако было замечено, что расстояние от центров разных динамиков до слушателя часто различно, и звуки от них доходят до слушателя не строго синфазно. Величина несинхронности чрезвычайно мала, но проблема существует. Решение было найдено в различных типах так называемых коаксиальных, находящихся на одной оси, громкоговорителях. В простейших случаях высокочастотный динамик закреплялся перед центром конуса низкочастотного диффузора, но, естественно, без физического соприкосновения с ним. Другой, более сложный, но и более изящный способ создания точечного излучателя предложила известная английская фирма Tannoy. В их, теперь уже классической системе, мембрана высокочастотного динамика находится сзади магнита низкочастотного динамика. В керне низкочастотного громкоговорителя проделаны каналы, по которым воздушное давление от высокочастотной мембраны проходит в направлении излучения низкочастотного диффузора, являющегося к тому же рупором для высоких частот. Так достигается идеальная точечность излучения.
Ранее упоминалось, что на высоких частотах диффузоры, особенно большие, колеблются в основном центральной частью, прилегающей к катушке. Это свойство было использовано при создании широкополосных громкоговорителей, популярных в профессиональной технике два-три десятилетия назад и встречающихся и поныне. В этих громкоговорителях в центральную часть диффузора вклеивался дополнительный микродиффузор, работавший как коаксиальный высокочастотный громкоговоритель. Конечно, результат был далек от качества настоящих коаксиальных систем, но отдача на высоких частотах у этих широкополосных динамиков действительно существенно улучшалась.
Современное производство предельно стандартизовано. Сложились стандарты и на размеры громкоговорителей - от мала до велика. Современные динамики принято мерить в дюймах, и это удобно: получается не только размер, но как бы и "номер изделия".
Даже для мощной акустики не применяются динамики больше 21", да и восемнадцатидюймовые встретишь не часто. Далее по порядку идут 15", 12", 10" и 8".
Среднечастотные - 8", 6,5" и 5". Высокочастотные - 4", 2,5" и 1,5". Впрочем, размеры диффузора имеют значение в основном для низкочастотных громкоговорителей, напрямую влияя на нижнюю границу диапазона и уровень звукового давления.
Реальную звуковую картину могут представить только большие акустические системы (контрольные мониторы) "дальнего поля", звучащие равномерно по всему диапазону частот и не перегружающиеся при рекомендованном уровне прослушивания (около 90 дБ).
Дата добавления: 2015-10-22; просмотров: 4520;