Геотерма; 2 — текущая термограмма; породы: 3 — непроницаемые, 4 — проницаемые; 5 — непроницаемый раздел между горизонтами; Н — глубина; t — температура
Важно учитывать, что скорость формирования и перемещения фронта аномальных температур (в рассматриваемом случае — фронта охлаждения) отстает от скорости перемещения фронта вытеснения, поскольку первые порции воды прогреваются до температуры пласта. Благодаря этому в высокопроницаемых прослоях, по которым происходит ускоренное продвижение воды, охлаждение пород может не ухудшать условий вытеснения нефти, но их охлаждение может сопровождаться некоторым снижением температуры в соседних по разрезу менее проницаемых прослоях и пластах, в которых скорость перемещения фронта вытеснения намного меньше. Это может приводить к повышению вязкости нефти в них и к ухудшению условий вытеснения нефти. Выявление таких частей продуктивного разреза имеет большое значение для оценки возможных потерь нефти в условиях закачки холодной воды для принятия решения о целесообразности нагнетания в пласты горячей воды (см. § 4 главы IX).
Снижение пластовой температуры в результате перемещения по пласту нагнетаемой воды в добывающей скважине можно установить следующим образом. В период работы скважины безводной нефтью температура потока жидкости в стволе против нижнего работающего интервала имеет аномальное значение по сравнению с природной за счет дроссельного эффекта. В стволе скважины температура снижается постепенно в направлении от забоя к устью в связи с потерями тепла в окружающую скважину среду. С началом поступления в скважину воды (первые порции ее имеют пластовую температуру) происходит увеличение забойного давления и соответствующее уменьшение дебита скважины. При этом снижается скорость подъема жидкости в скважине и соответственно возрастают потери тепла; снижение температуры по стволу скважины происходит несколько интенсивнее. Подход к скважине по наиболее быстро вырабатываемым прослоям фронта охлаждения приводит к весьма значительному снижению температуры жидкости в скважине выше места поступления воды. Это место фиксируется резким сдвигом температурной кривой в сторону меньших значений температуры. При обводнении нижней части эксплуатационного объекта исчезает влияние на изменение температуры дроссельного эффекта.
Получаемые в результате температурных исследований скважин данные обобщают в виде таблиц, карт, профилей, отражающих распределение температуры в пределах эксплуатационного объекта.
Контроль за изменением теплового режима залежей при других методах воздействия на пласты, вызывающих изменения их температуры, проводится аналогичным образом.
Термометрические исследования нагнетательных скважин (преимущественно остановленных) дают возможность достаточно надежно выделять в них пласты, принимающие воду. Поскольку такие пласты тесно коррелируются с работающими в добывающих скважинах, эти исследования дают ценную информацию для оценки охвата пластов процессом заводнения. Метод термометрии имеет определенные преимущества перед методом потокометрии, применяемым для решения этой лее задачи. Он дает возможность выделять истинно заводняемые интервалы продуктивных пластов, в то время как потокометрия выделяет интервалы перфорации, принимающие воду, среди которых могут быть и те, куда вода поступает в связи с сообщаемостью этих интервалов с истинно поглощающими пластами в результате нарушенности цементного камня за колонной. В.Л. Лутков, внесший большой вклад в развитие термометрических методов контроля за разработкой, рекомендует в качестве интервалов, принимающих воду, выделять на термограмме остановленной нагнетательной скважины интервалы с отрицательными температурными аномалиями. Характерные примеры такого выделения приведены на рис. 92. При проведении границ принимающих интервалов учитывается тот факт, что отрицательные аномалии распространяются вверх и вниз по стволу скважины под действием теплопроводности жидкости и металла, а также вследствие охлаждения пород, подстилающих и перекрывающих продуктивные пласты.
Рис. 92. Примеры выделения пластов, принимающих воду, по термограммам остановленных нагнетательных скважин (по данным ВНИИнефтн).
Эффективная толщина ; 1 — принимающая воду ( ), 2 — не принимающая воду; 3 — интервал перфорации; 4 — непроницаемые прослои; 5 — термограмма
Периодическое снятие температурных кривых в водонагнетательных скважинах при остановках и сравнительный их анализ позволяют выявлять изменения режима работы пластов, случаи выключения ранее действовавших пластов из работы и др.
Изучение температурных условий в скважинах дает возможность определять и их техническое состояние. Так, по данным термометрии можно выявить один из наиболее опасных для процесса разработки дефектов скважины — низкое качество цементирования, приводящее к перетокам жидкостей по затрубному пространству в неперфорированные пласты — продуктивные или водоносные. Перетоки воды в нагнетательной скважине в пласты, не вскрытые перфорацией, фиксируются распространением отрицательной температурной аномалии за пределы поглощающего перфорированного пласта.
В добывающих скважинах методом термометрии могут быть выявлены место притока верхней воды через нарушение колонны, поступление воды по заколонному пространству из нижнего неперфорированного пласта и др. Термометрические исследования целесообразно комплексировать с изучением химического состава вод, получаемых из скважин.
Глава XIV КОНТРОЛЬ ОХВАТА ЭКСПЛУАТАЦИОННОГО ОБЪЕКТА ПРОЦЕССОМ ВЫТЕСНЕНИЯ
Дата добавления: 2015-10-19; просмотров: 1298;