В дальнейшем изложении мы будем предполагать применение операции переименования во всех конфликтных случаях.

5.1.3. Особенности теоретико-множественных операций реляционной алгебры

Хотя в основе теоретико-множественной части реляционной алгебры лежит классическая теория множеств, соответствующие операции реляционной алгебры обладают некоторыми особенностями.

Начнем с операции объединения (все, что будет говориться по поводу объединения, переносится на операции пересечения и взятия разности). Смысл операции объединения в реляционной алгебре в целом остается теоретико-множественным. Но если в теории множеств операция объединения осмысленна для любых двух множеств-операндов, то в случае реляционной алгебры результатом операции объединения должно являться отношение. Если допустить в реляционной алгебре возможность теоретико-множественного объединения произвольных двух отношений (с разными схемами), то, конечно, результатом операции будет множество, но множество разнотипных кортежей, т.е. не отношение. Если исходить из требования замкнутости реляционной алгебры относительно понятия отношения, то такая операция объединения является бессмысленной.

Все эти соображения приводят к появлению понятия совместимости отношений по объединению: два отношения совместимы по объединению в том и только в том случае, когда обладают одинаковыми заголовками. Более точно, это означает, что в заголовках обоих отношений содержится один и тот же набор имен атрибутов, и одноименные атрибуты определены на одном и том же домене.

Если два отношения совместимы по объединению, то при обычном выполнении над ними операций объединения, пересечения и взятия разности результатом операции является отношение с корректно определенным заголовком, совпадающим с заголовком каждого из отношений-операндов. Напомним, что если два отношения "почти" совместимы по объединению, т.е. совместимы во всем, кроме имен атрибутов, то до выполнения операции типа соединения эти отношения можно сделать полностью совместимыми по объединению путем применения операции переименования.

Заметим, что включение в состав операций реляционной алгебры трех операций объединения, пересечения и взятия разности является очевидно избыточным, поскольку известно, что любая из этих операций выражается через две других. Тем не менее, Кодд в свое время решил включить все три операции, исходя из интуитивных потребностей потенциального пользователя системы реляционных БД, далекого от математики.

Другие проблемы связаны с операцией взятия прямого произведения двух отношений. В теории множеств прямое произведение может быть получено для любых двух множеств, и элементами результирующего множества являются пары, составленные из элементов первого и второго множеств. Поскольку отношения являются множествами, то и для любых двух отношений возможно получение прямого произведения. Но результат не будет отношением! Элементами результата будут являться не кортежи, а пары кортежей.

Поэтому в реляционной алгебре используется специализированная форма операции взятия прямого произведения - расширенное прямое произведение отношений. При взятии расширенного прямого произведения двух отношений элементом результирующего отношения является кортеж, являющийся конкатенацией (или слиянием) одного кортежа первого отношения и одного кортежа второго отношения.

Но теперь возникает второй вопрос - как получить корректно сформированный заголовок отношения-результата? Очевидно, что проблемой может быть именование атрибутов результирующего отношения, если отношения-операнды обладают одноименными атрибутами.

Эти соображения приводят к появлению понятия совместимости по взятию расширенного прямого произведения. Два отношения совместимы по взятию прямого произведения в том и только в том случае, если множества имен атрибутов этих отношений не пересекаются. Любые два отношения могут быть сделаны совместимыми по взятию прямого произведения путем применения операции переименования к одному из этих отношений.

Следует заметить, что операция взятия прямого произведения не является слишком осмысленной на практике. Во-первых, мощность ее результата очень велика даже при допустимых мощностях операндов, а во-вторых, результат операции не более информативен, чем взятые в совокупности операнды. Как мы увидим немного ниже, основной смысл включения операции расширенного прямого произведения в состав реляционной алгебры состоит в том, что на ее основе определяется действительно полезная операция соединения.

По поводу теоретико-множественных операций реляционной алгебры следует еще заметить, что все четыре операции являются ассоциативными. Т. е., если обозначить через OP любую из четырех операций, то (A OP B) OP C = A (B OP C), и следовательно, без введения двусмысленности можно писать A OP B OP C (A, B и C - отношения, обладающие свойствами, требуемыми для корректного выполнения соответствующей операции). Все операции, кроме взятия разности, являются коммутативными, т.е. A OP B = B OP A.

5.1.4. Специальные реляционные операции

В этом подразделе мы несколько подробнее рассмотрим специальные реляционные операции реляционной алгебры: ограничение, проекция, соединение и деление.

Операция ограничения

Операция ограничения требует наличия двух операндов: ограничиваемого отношения и простого условия ограничения. Простое условие ограничения может иметь либо вид (a comp-op b), где а и b - имена атрибутов ограничиваемого отношения, для которых осмысленна операция сравнения comp-op, либо вид (a comp-op const), где a - имя атрибута ограничиваемого отношения, а const - литерально заданная константа.

В результате выполнения операции ограничения производится отношение, заголовок которого совпадает с заголовком отношения-операнда, а в тело входят те кортежи отношения-операнда, для которых значением условия ограничения является true.

Пусть UNION обозначает операцию объединения, INTERSECT - операцию пересечения, а MINUS – операцию взятия разности. Для обозначения операции ограничения будем использовать конструкцию A WHERE comp, где A - ограничиваемое отношение, а comp - простое условие сравнения. Пусть comp1 и comp2 - два простых условия ограничения. Тогда по определению:

A WHERE comp1 AND comp2 обозначает то же самое, что и (A WHERE comp1) INTERSECT (A WHERE comp2) A WHERE comp1 OR comp2 обозначает то же самое, что и (A WHERE comp1) UNION (A WHERE comp2) A WHERE NOT comp1 обозначает то же самое, что и A MINUS (A WHERE comp1)

С использованием этих определений можно использовать операции ограничения, в которых условием ограничения является произвольное булевское выражение, составленное из простых условий с использованием логических связок AND, OR, NOT и скобок.

На интуитивном уровне операцию ограничения лучше всего представлять как взятие некоторой "горизонтальной" вырезки из отношения-операнда.

Операция взятия проекции

Операция взятия проекции также требует наличия двух операндов - проецируемого отношения A и списка имен атрибутов, входящих в заголовок отношения A.

Результатом проекции отношения A по списку атрибутов a1, a2, ..., an является отношение, с заголовком, определяемым множеством атрибутов a1, a2, ..., an, и с телом, состоящим из кортежей вида <a1:v1, a2:v2, ..., an:vn> таких, что в отношении A имеется кортеж, атрибут a1 которого имеет значение v1, атрибут a2 имеет значение v2, ..., атрибут an имеет значение vn. Тем самым, при выполнении операции проекции выделяется "вертикальная" вырезка отношения-операнда с естественным уничтожением потенциально возникающих кортежей-дубликатов.

Операция соединения отношений

Общая операция соединения (называемая также соединением по условию) требует наличия двух операндов - соединяемых отношений и третьего операнда - простого условия. Пусть соединяются отношения A и B. Как и в случае операции ограничения, условие соединения comp имеет вид либо (a comp-op b), либо (a comp-op const), где a и b - имена атрибутов отношений A и B, const - литерально заданная константа, а comp-op - допустимая в данном контексте операция сравнения.

Тогда по определению результатом операции сравнения является отношение, получаемое путем выполнения операции ограничения по условию comp прямого произведения отношений A и B. Если внимательно осмыслить это определение, то станет ясно, что в общем случае применение условия соединения существенно уменьшит мощность результата промежуточного прямого произведения отношений-операндов только в том случае, когда условие соединения имеет вид (a comp-op b), где a и b – имена атрибутов разных отношений-операндов. Поэтому на практике обычно считают реальными операциями соединения именно те операции, которые основываются на условии соединения приведенного вида.

Хотя операция соединение в нашей интерпретации не является примитивной (поскольку она определяется с использованием прямого произведения и проекции), в силу особой практической важности она включается в базовый набор операций реляционной алгебры. Заметим также, что в практических реализациях соединение обычно не выполняется именно как ограничение прямого произведения. Имеются более эффективные алгоритмы, гарантирующие получение такого же результата.

Имеется важный частный случай соединения - эквисоединение и простое, но важное расширение операции эквисоединения - естественное соединение. Операция соединения называется операцией эквисоединения, если условие соединения имеет вид (a = b), где a и b - атрибуты разных операндов соединения. Этот случай важен потому, что (a) он часто встречается на практике, и (b) для него существуют эффективные алгоритмы реализации.

Операция естественного соединения применяется к паре отношений A и B, обладающих (возможно составным) общим атрибутом c (т.е. атрибутом с одним и тем же именем и определенным на одном и том же домене). Пусть ab обозначает объединение заголовков отношений A и B. Тогда естественное соединение A и B – это спроектированный на ab результат эквисоединения A и B по A/c и BBC. Если вспомнить введенное нами в конце предыдущей главы определение внешнего ключа отношения, то должно стать понятно, что основной смысл операции естественного соединения - возможность восстановления сложной сущности, декомпозированной по причине требования первой нормальной формы. Операция естественного соединения не включается прямо в состав набора операций реляционной алгебры, но она имеет очень важное практическое значение.

Операция деления отношений

Эта операция наименее очевидна из всех операций реляционной алгебры и поэтому нуждается в более подробном объяснении. Пусть заданы два отношения - A с заголовком {a1, a2, ..., an, b1, b2, ..., bm} и B с заголовком {b1, b2, ..., bm}. Будем считать, что атрибут bi отношения A и атрибут bi отношения B не только обладают одним и тем же именем, но и определены на одном и том же домене. Назовем множество атрибутов {aj} составным атрибутом a, а множество атрибутов {bj} - составным атрибутом b. После этого будем говорить о реляционном делении бинарного отношения A(a,b) на унарное отношение B(b).

Результатом деления A на B является унарное отношение C(a), состоящее из кортежей v таких, что в отношении A имеются кортежи <v, w> такие, что множество значений {w} включает множество значений атрибута b в отношении B.

Предположим, что в базе данных сотрудников поддерживаются два отношения: СОТРУДНИКИ ( ИМЯ, ОТД_НОМЕР ) и ИМЕНА ( ИМЯ ), причем унарное отношение ИМЕНА содержит все фамилии, которыми обладают сотрудники организации. Тогда после выполнения операции реляционного деления отношения СОТРУДНИКИ на отношение ИМЕНА будет получено унарное отношение, содержащее номера отделов, сотрудники которых обладают всеми возможными в этой организации именами.

 








Дата добавления: 2015-10-13; просмотров: 870;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.