Tips on writing an abstract

An abstract is an abbreviated version of your science fair project final report. For most science fairs it is limited to a maximum of 250 words (check the rules for your competition). The science fair project abstract appears at the beginning of the report as well as on your display board.

The first sentence of an abstract should clearly introduce the topic of the paper so that readers can relate it to other work they are familiar with. However, an analysis of abstracts across a range of fields show that few follow this advice, nor do they take the opportunity to summarize previous work in their second sentence. A central issue is the lack of structure in standard advice on abstract writing, so most authors don’t realize the third sentence should point out the deficiencies of this existing research. To solve this problem, we describe a technique that structures the entire abstract around a set of six sentences, each of which has a specific role, so that by the end of the first four sentences you have introduced the idea fully. This structure then allows you to use the fifth sentence to elaborate a little on the research, explain how it works, and talk about the various ways that you have applied it, for example to teach generations of new graduate students how to write clearly. This technique is helpful because it clarifies your thinking and leads to a final sentence that summarizes why your research matters.

Introduction. In one sentence, what’s the topic? Phrase it in a way that your reader will understand. If you’re writing a PhD thesis, your readers are the examiners – assume they are familiar with the general field of research, so you need to tell them specifically what topic your thesis addresses. Same advice works for scientific papers – the readers are the peer reviewers, and eventually others in your field interested in your research, so again they know the background work, but want to know specifically what topic your paper covers.

State the problem you tackle. What’s the key research question? Again, in one sentence. (Note: For a more general essay, I’d adjust this slightly to state the central question that you want to address) Remember, your first sentence introduced the overall topic, so now you can build on that, and focus on one key question within that topic. If you can’t summarize your thesis / paper / essay in one key question, then you don’t yet understand what you’re trying to write about. Keep working at this step until you have a single, concise (and understandable) question.

Summarize (in one sentence) why nobody else has adequately answered the research question yet. For a PhD thesis, you’ll have an entire chapter, covering what’s been done previously in the literature. Here you have to boil that down to one sentence. But remember, the trick is not to try and cover all the various ways in which people have tried and failed; the trick is to explain that there’s this one particular approach that nobody else tried yet (hint: it’s the thing that your research does). But here you’re phrasing it in such a way that it’s clear it’s a gap in the literature. So use a phrase such as “previous work has failed to address…”. (if you’re writing a more general essay, you still need to summarize the source material you’re drawing on, so you can pull the same trick – explain in a few words what the general message in the source material is, but expressed in terms of what’s missing)

Explain, in one sentence, how you tackled the research question. What’s your big new idea? (Again for a more general essay, you might want to adapt this slightly: what’s the new perspective you have adopted? or: What’s your overall view on the question you introduced in step 2?)

In one sentence, how did you go about doing the research that follows from your big idea. Did you run experiments? Build a piece of software? Carry out case studies? This is likely to be the longest sentence, especially if it’s a PhD thesis – after all you’re probably covering several years worth of research. But don’t overdo it – we’re still looking for a sentence that you could read aloud without having to stop for breath. Remember, the word ‘abstract’ means a summary of the main ideas with most of the detail left out. So feel free to omit detail! (For those of you who got this far and are still insisting on writing an essay rather than signing up for a PhD, this sentence is really an elaboration of sentence 4 – explore the consequences of your new perspective).

As a single sentence, what’s the key impact of your research? Here we’re not looking for the outcome of an experiment. We’re looking for a summary of the implications. What’s it all mean? Why should other people care? What can they do with your research. (Essay folks: all the same questions apply: what conclusions did you draw, and why would anyone care about them?)

Things to Avoid

Avoid jargon or any technical terms that most readers won't understand.

Avoid abbreviations or acronyms that are not commonly understood unless you describe what they mean.

Abstracts do not have a bibliography or citations.

Abstracts do not contain tables or graphs.

For most science fairs, the abstract must focus on the previous 12 months' research (or less), and give only minimal reference to any earlier work.

If you are working with a scientist or mentor, your abstract should only include procedures done by you, and you should not put acknowledgements to anyone in your abstract.

 

 

Plasma

The plasma state is often referred to as the fourth state of matter, an identification that resonates with the element of fire, which along with earth, water and air made up the elements of Greek cosmology according to Empedocles. Fire may indeed result in a transition from the gaseous to the plasma state, in which a gas may be fully or, more likely, partially ionized. For the present we identify as plasma any state of matter that contains enough free charged particles for its dynamics to be dominated by electromagnetic forces. In practice quite modest degrees of ionization are sufficient for a gas to exhibit electromagnetic properties. Even at 0.1 per cent ionization a gas already has an electrical conductivity almost half the maximum possible, which is reached at about 1 per cent ionization. The outer layers of the Sun and stars in general are made up of matter in an ionized state and from these regions winds blow through interstellar space contributing, along with stellar radiation, to the ionized state of the interstellar gas. Thus, much of the matter in the Universe exists in the plasma state. The Earth and its lower atmosphere is an exception, forming a plasma-free oasis in a plasma universe. The upper atmosphere on the other hand, stretching into the ionosphere and beyond to the magnetosphere, is rich in plasma effects. Solar physics and in a wider sense cosmic electrodynamics make up one of the roots from which the physics of plasmas has grown; in particular, that part of the subject known as magnetohydrodynamics – MHD for short – was established largely through the work of Alfven. A quite separate root developed from the physics of gas discharges, with glow discharges used as light sources and arcs as a means of cutting and welding metals. The word plasma was first used by Langmuir in 1928 to describe the ionized regions in gas discharges. These origins are discernible even today though the emphasis has shifted. Much of the impetus for the development of plasma physics over the second half of the twentieth century came from research into controlled thermonuclear fusion on the one hand and astrophysical and space plasma phenomena on the other.

To a degree these links with ‘big science’ mask more bread-and-butter applications of plasma physics over a range of technologies. The use of plasmas as sources for energy-efficient lighting and for metal and waste recycling and their role in surface engineering through high-speed deposition and etching may seem prosaic by comparison with fusion and space science but these and other commercial applications have laid firm foundations for a new plasma technology.

 








Дата добавления: 2015-09-21; просмотров: 760;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.