Гомополисахариды

Крахмал – главный резервный полисахарид растений, запасается во многих семенах, клубнях, корневищах и используется только тогда, когда эти органы прорастают. В клубнях картофеля его содержится около 20%, кукурузе – 55-60%, ржи – около 70%.

Крахмал является одним из важнейших продуктов фотосинтеза, образующийся в зеленых листьях растений в виде так называемых первичных зерен. Затем он расщепляется на моносахариды или их фосфорнокислые эфиры и переносится в другие части растений, например, клубни картофеля или зерна злаков. Здесь вновь происходит отложение крахмала в виде зерен, форма и размер которых характерны для данного вида растений.

Крахмал подобно белкам обладает гидрофильными свойствами, однако в холодной воде крахмальные зерна лишь набухают, но не растворяются. Если взвесь крахмальных зерен в воде постепенно нагревать, то они будут набухать все сильнее и при определенной температуре крахмал образует вязкий коллоидный раствор, называемый крахмальный клейстер.

Температура клейстеризации крахмала для разных растений неодинакова и находится в пределах 55-75°С.

Характерным свойством крахмала является его способность окрашиваться йодом в темно-синий цвет.

Крахмал не является химически индивидуальным веществом. На 96-98% он состоит из полисахаридов. В нем найдены в небольшом количестве белки, высокомолекулярные жирные кислоты, минеральные кислоты (фосфорная и кремниевая), которые адсорбированы на крахмальных зернах.

Полисахаридная фракция крахмала состоит из двух компонентов: амилозы и амилопектина.

Амилозалегко растворима в теплой воде и дает нестойкие растворы со сравнительно низкой вязкостью. Длительное хранение раствора амилозы на холоде приводит к выпадению ее в осадок. Этот процесс носит название ретроградации амилозы. Этим, отчасти, можно объяснить процесс черствения хлеба при его хранении.

Молекула амилозы имеет линейную структуру, представляет собой длинную цепочку из остатков a-D-глюкопиранозы, соединенных a(1®4)-гликозидными связями:

Количество остатков глюкозы в каждой цепи колеблется от 100 до нескольких тысяч. По данным рентгеноструктурного анализа пространственная конформация цепной макромолекулы амилозы имеет форму спирали.

Такая форма обусловлена тем, что остатки a-Д-глюкозы в составе амилозы имеют конформацию лодки, которая способствует спирализации полигликозидной цепи.. На каждый виток спирали приходится 6 остатков глюкопиранозы. Во внутренний канал спирали могут входить соответствующие по размеру молекулы, например, молекулы йода образуют комплексы, называемые соединениями включения, комплекс амилозы с йодом имеет синий цвет. Это используется в аналитических целях для открытия как крахмала, так и йода.

Амилопектин в отличие от амилозы имеет сильно разветвленную структуру. В его молекулу входит до 50.000 a-D-глюкопиранозных остатков. Наряду с a(1®4) связями в амилопектине имеются также a-(1®6) гликозидные связи, представляющие собой точки ветвления. Между точками ветвления располагается 20-25 глюкопиранозных остатков. Гликозидные a–(1®6) связи составляют около 5% от общего количества связей, содержащихся в молекуле амилопектина.

Методом рентгеноструктурного анализа показано, что структура амилопектина напоминает гроздь винограда.

 

 

Амилопектин с йодом дает красно-фиолетовое окрашивание.

Как в амилозе, так и в амилопектине, имеется только один восстанавливающий конец, при том его доля невелика, поэтому крахмал относят к нередуцирующим полисахаридам.

В крахмале большинства растений на долю амилопектина приходится 70-90%, остальные 10-30% составляет амилоза. Однако содержание этих компонентов может изменяться в зависимости от сорта растения, типа ткани, из которой он извлечен. Соотношение амилоза / амилопектин изменяется также во время созревания зерна. Крахмал некоторых культур может быть представлен только одним видом полисахарида, так, у яблок это амилоза, у восковидной кукурузы только амилопектин.

Целлюлоза (клетчатка) –структурный полисахарид, является основным компонентом клеточных стенок растений.

Целлюлоза придает растительной ткани механическую прочность и эластичность, выполняя роль опорного материала растений. В природе целлюлоза не встречается в чистом виде. Волокна хлопка содержат 96-98% целлюлозы, в различных видах древесины содержание ее составляет 40-60%. Волокна льна и конопли состоят преимущественно из клетчатки. Важнейшими спутниками целлюлозы являются лигнин, гемицеллюлозы, пектиновые вещества, смолы и жиры.

Структурной единицей целлюлозы является b-D-глюкопираноза, звенья которой связаны b-(1→4)-гликозидными связями. Это подтверждается тем, что при частичном гидролизе клетчатки образуется дисахарид целлобиоза, имеющий тоже b-(1→4)-гликозидную связь.

Строение клетчатки можно выразить следующей формулой:

b-Д-глюкопираноза в составе клетчатки находится в креслообразной конформации. Это исключает возможность спирализации полиглюкозидной цепи, поэтому молекула целлюлозы сохраняет строго линейное строение.

В растительных клеточных стенках молекулы целлюлозы связаны друг с другом бок о бок, образуя структурные единицы, получившие названия микрофибрилл.

Каждая микрофибрилла состоит из пучка молекул целлюлозы, расположенных по ее длине параллельно друг другу.

Рентгеноструктурные исследования показали, что в полимерной цепи остатки молекул глюкозы повернуты относительно друг друга на 180°С, что делает возможным образование водородных связей между ОН-группой при атоме С-3 одного глюкозного остатка и кислородом пиранозного кольца следующего остатка глюкозы. Это препятствует вращению расположенных рядом остатков глюкозы вокруг соединяющей их гликозидной связи. В результате образуется жесткая линейная и пространственная структуры.

Целлюлоза не растворяется в воде, но в ней набухает. Она не усваивается организмом человека, т.к. в организме не вырабатывается фермент, способный расщеплять b-гликозидную связь. Однако она является необходимым для нормального питания балластным веществом, выполняющим энтеросорбентную функцию. Целлюлоза усваивается травоядными животными, в желудочно-кишечном тракте которых находится специфическая микрофлора, вырабатывающая фермент целлюлазу.

Схему гидролиза целлюлозы можно представить:

Кислотный гидролиз целлюлозы при температуре 170°С приводит к образованию глюкозы, которая используется для получения кормовых дрожжей, этилового спирта. В промышленности из целлюлозы получают хлопчатобумажные ткани, бумагу и целый ряд химических продуктов: вискозу, целлоффан, кинопленку, ацетатный шелк и др.








Дата добавления: 2015-09-11; просмотров: 1193;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.