Биологический и геологический круговороты
Все вещества на планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ: большой (геологический, биосферный) и малый (биологический).
Большой круговорот веществ в биосфере характеризуется двумя важными моментами: он осуществляется на протяжении всего геологического развития Земли и представляет собой современный планетарный процесс, принимающий ведущее участие в дальнейшем развитии биосферы.
Геологический круговорот связан с образованием и разрушением горных пород и последующим перемещением продуктов разрушения — обломочного материала и химических элементов. Значительную роль в этих процессах играли и продолжают играть термические свойства поверхности суши и воды: поглощение и отражение солнечных лучей, теплопроводность и теплоемкость. Неустойчивый гидротермический режим поверхности Земли вместе с планетарной системой циркуляции атмосферы обусловливал геологический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и современных геосфер. Со становлением биосферы в большой круговорот включились продукты жизнедеятельности организмов. Геологический круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.
Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и другие — участвуют в большом круговороте, проходя от глубинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации магмы, поступив на поверхность литосферы из глубин Земли, подвергается разложению, выветриванию в области биосферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глубину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис. ).
Наиболее интенсивному и быстрому круговороту подвергаются легкоподвижные вещества — газы и природные воды, составляющие атмосферу и гидросферу планеты. Значительно медленнее совершает круговорот материал литосферы. В целом каждый круговорот любого химического элемента является частью общего большого круговорота веществ на Земле, и все они тесно связаны между собой. Живое вещество биосферы в этом круговороте выполняет огромную работу по перераспределению химических элементов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.
Малый, или биологический, круговорот веществ— это
циркуляция веществ между растениями, животными, грибами, микроорганизмами и почвой. Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов — создания органических веществ и их разрушения. Начальный этап возникновения органических веществ обусловлен фотосинтезом зеленых растений, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, магния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I порядка) поглощают соединения этих элементов уже в виде пищи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потребляя пищу более сложного состава, включающую белки, жиры, аминокислоты и другие вещества. В процессе разрушения микроорганизмами (редуцентами) органических веществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следующий виток биологического круговорота (рис. 33).
Возникновение и развитие ноосферы
Эволюция органического мира на Земле прошла несколько этапов.Первый –связан с возникновением биологического круговорота веществ в биосфере. Второй- сопровождался формированием многоклеточных организмов. Эти два этапа называют биогенезом.Третий этап связан с появлением человеческого общества, под влиянием которого в современных условиях происходит эволюция биосферы и превращение ее в сферу разума-ноосферу(от гр.-разум,-шар). Ноосфера- новое состояние биосферы, когда разумная деятельность человека становится главным фактором, обуславливающим ее развитие. Термин «»ноосфера» был введен Э. Леруа. В. И. Вернадский углубил и развил учение о ноосфере. Он писал: «Ноосфера есть новое геологическое явление на нашей планете.В ней человек становится крупной геологической силой». В. И. Вернадский выделил необходимые предпосылки для создания ноосферы:1.Человечество стало единым целым.2.Возможность мгновенного обмена информацией.3.Реальное равенство людей.4.Рост общего уровня жизни.5.Использование новых видов энергии. 6.Исключение войн из жизни общества. Создание этих предпосылок становится возможным в результате взрыва научной мысли в ХХ веке.
Тема – 6. Природа – человек: системный подход.Цель лекции: Сформировать целостное представление о системных постулатах экологии.
Основные вопросы:1.Понятие о системе и о сложных биосистемах.2.Особенности биологических систем.3.Системные постулаты: закон всеобщей связи, экологические законы Б. Коммонера, Закон больших чисел, Принцип Ле Шателье, Закон обратной связи в природе и закон константности количества живого вещества.4.Модели взаимодействий в системах «природа- человек» и « человек-экономика-биота-среда».
Экологическая система – главный объект экологии. Экология по своей сущности системна и в теоретическом облике близка к общей теории систем. Согласно общей теории систем система- это реальная или мыслимая совокупность частей , целостные свойства которой определяются взаимодействием между частями (элементами) системы. В реальной жизни ,систему определяют как совокуность объектов, объединенных некоторой формой регулярного взаимодействий или взаимозависимости для выполнения заданной функции. В материальном существуют определенные иерархии-упорядоченные последовательности пространственно-временного соподчинения и усложнения систем. Все многообразия нашего мира представить в виде трех последовательно возникших иерархий. Это основная,природная, физико- химико- биологическая(Ф,Х,Б) иерархия и побочные две, возникшие на ее основе, социальная (С) и техническая (Т) иерархии. Существование последних по совокупности обратных связей определенным образом влияет на основную иерархию. Объединение систем из разных иерархий приводит к «смешанным» классам систем. Так, объединение систем из физико-химической части иерархии (Ф, X — «среда») с живыми системами биологической части иерархии (Б — «биота») приводит к смешанному классу систем, называемых экологическими. А объединение систем из иерархий С
(«человек») и Т («техника») приводит к классу хозяйственных, или технико-экономических, систем.
Рис. . Иерархии материальных систем:
Ф, X — физико-химическая, Б — биологическая, С — социальная, Т — техническая
Должно быть понятно, что отображенное на схеме воздействие человеческого общества на природу, опосредованное техникой и технологиями (техногенез), относится ко всей иерархии природных систем: нижняя ветвь — к абиотической среде, верхняя — к биоте биосферы. Ниже будет рассмотрена сопряженность экологических и технико-экономических сторон этого взаимодействия.
Всем системам присущи некоторые общие свойства:
1. Каждая система имеет определенную структуру, определяемую формой пространственно-временных связей или взаимодейст вий между элементами системы. Структурная упорядоченность сама по себе не определяет организацию системы. Систему можно назвать организованной, если ее существование либо необходимо для поддержания некоторой функциональной (выполняющей определенную работу) структуры, либо, напротив, зависит от деятельности такой структуры.
2. Согласно принципу необходимого разнообразия система не может состоять из идентичных элементов, лишенных индивидуальности. Нижний предел разнообразия — не менее двух элементов (протон и электрон, белок и нуклеиновая кислота, «он» и «она»), верхний — бесконечность. Разнообразие — важнейшая информационная характеристика системы. Оно отличается от числа разновидностей элементов и может быть измерено.3.Свойства системы невозможно постичь лишь на основании свойств ее частей. Решающее значение имеет именно взаимодействие между элементами. По отдельным деталям машины перед сборкой нельзя судить о ее действии. Изучая по отдельности некоторые формы грибов и водорослей, нельзя предсказать существование их симбиоза в виде лишайника. Совместное действие двух или более различных факторов на организм почти всегда отличается от суммы их раздельных эффектов. Степень несводимости свойств системы к сумме свойств отдельных элементов, из которых она состоит, определяет эмерджентность системы.
4.Выделение системы делит ее мир на две части — саму систему и ее среду. В зависимости от наличия (отсутствия) обмена веществом, энергией и информацией со средой принципиально возможны: изолированные системы (никакой обмен невозможен); замкнутые системы (невозможен обмен веществом); открытые системы(возможен обмен веществом и энергией). Обмен энергии определяет обмен информацией. В живой природе существуют только открытые динамические системы, между внутренними элементами которых и элементами среды осуществляются переносы вещества, энергии и информации. Любая живая система — от вируса до биосферы — представляет собой открытую динамическую систему.
5. Преобладание внутренних взаимодействий в системе над внешними и лабильность системы по отношению к внешним воз
действиям определяют ее способность к самосохранению благодаря качествам организованности, выносливости и устойчивости. Внешнее воздействие на систему, превосходящее силу и гибкость еевнутренних взаимодействий, приводит к необратимым изменениям
и гибели системы. Устойчивость динамической системы поддерживается непрерывно выполняемой ею внешней циклической работой. Для этого необходимы поток и преобразование энергии в сие. теме. Вероятность достижения главной цели системы — самосохранения (в том числе и путем самовоспроизведения) определяется кaк ее потенциальная эффективность.
6. Действие системы во времени называют ее поведением. Вызванное внешним фактором изменение поведения обозначают как реакцию системы, а изменение реакции системы, связанное с изменением структуры и направленное на стабилизацию поведения, -.как ее приспособление, или адаптацию. Закрепление адаптивных изменений структуры и связей системы во времени, при котором ее потенциальная эффективность увеличивается, рассматривается кaк развитие, или эволюция, системы. Возникновение и существование всех материальных систем в природе обусловлено эволюцией. Динамические системы эволюционируют в направлении от более вероятной к менее вероятной организации, т.е. развитие идет по пути усложнения организации иобразования подсистем в структуре системы. В природе все формы поведения систем — от элементарной реакции до глобальной эволюции — существенно нелинейны. Важной особенностью эволюции сложных систем является
неравномерность, отсутствие монотонности. Периоды постепенного накопления незначительных изменений иногда прерываются резкими качественными скачками, существенно меняющими свойства системы. Обычно они связаны с так называемыми точками бифуркации — раздвоением, расщеплением прежнего пути эволюции. 0т выбора того или иного продолжения пути в точке бифуркации очень многое зависит, вплоть до появления и процветания нового мира частиц, веществ, организмов, социумов или, наоборот, гибели системы. Даже для решающих систем результат выбора часто непредсказуем, а сам выбор в точке бифуркации может быть обусловлен случайным импульсом. Любая реальная система может быть представлена в виде некоторого материального подобия или знакового образа, т.е. соответственно аналоговой или знаковой моделью системы. Моделирование неизбежно сопровождается некоторым упрощением и формализацией взаимосвязей в системе. Эта формализация может быть
осуществлена в виде логических (причинно-следственных) и/или математических (функциональных) отношений .По мере возрастания сложности систем у них появляются новые эмерджентные качества. При этом сохраняются качества более простых систем. Поэтому общее разнообразие качеств системы возрастает по мере ее усложнения (рис. 2.2).
Рис. 2.2. Закономерности изменений свойств иерархий систем с повышением их уровня (по Флейшману, 1982):
1 — разнообразие, 2 — устойчивость, 3 — эмерджентность, 4 — сложность, 5 — неидентичность, 6 — распространенность
В порядке возрастания активности по отношению к внешним воздействиям качества системы могут быть упорядочены в следующей последовательности: 1 — устойчивость, 2 — надежность, обусловленная информированностью о среде (помехоустойчивость), 3 — управляемость, 4 — самоорганизация. В этом ряду каждое последующее качество имеет смысл при наличии предыдущего.
Пар Сложностьструктуры системы определяется числом п ее элементов и числом т
связей между ними. Если в какой-либо системе исследуется число частных дискретных состояний, то сложность системы С определяется логарифмом числа связей:
C=lgm. (2.1)
Системы условно классифицируются по сложности следующим образом: 1) системы, имеющие до тысячи состояний (О <С < 3), относятся к простым; 2) системы, имеющие до миллиона состояний (3 < С < 6), являют собой сложные системы; 3) системы с числом состояний свыше миллиона (С > 6) идентифицируются как очень сложные.
Все реальные природные биосистемы очень сложны. Даже в структуре единичного вируса число биологически значимых молекулярных состояний превышает последнее значение.
Дата добавления: 2015-08-14; просмотров: 4030;