Искусственные спутники Земли
Ведение. Искусственные спутники Земли — это космические аппараты, выведенные на околоземные орбиты. Форма орбит ИСЗ зависит от скорости движения спутника и его расстояния от центра Земли и представляет собой окружность или эллипс. Кроме того, орбиты различаются наклоном по отношению к плоскости экватора, а также направлением вращения. На форму орбит ИСЗ влияет несферичность гравитационного поля Земли, гравитационные поля Луны, Солнца и других небесных тел, а также аэродинамические силы, возникающие при движении ИСЗ в верхних слоях атмосферы, и другие причины.
Выбор формы орбиты ИСЗ во многом зависит от его назначения и особенностей выполняемых им задач.
Назначение ИСЗ. В зависимости от решаемых задач ИСЗ подразделяют на научно-исследовательские, прикладные и военные.
Научно-исследовательские ИСЗслужат для изучения Земли, небесных тел и космического пространства. С их помощью проводятся геофизические, астрономические, геодезические, биологические и др. исследования. Орбиты таких спутников разнообразны: от почти круговых на высоте 200...300 км до вытянутых эллиптических с высотой в апогее до 500 тыс. км. Это ИСЗ «Прогноз», «Электрон», «Протон» и др., выведенные на орбиты для изучения процессов солнечной активности и их влияния на магнитосферу Земли, изучения космических лучей и взаимодействия с веществом частиц сверхзвуковых энергий.
К прикладным ИСЗотносятся связные (телекоммуникационные), метеорологические, геодезические, навигационные, океанографические, геологические, спасательно-поисковые и другие.
Особое значение имеют связные ИСЗ — «Молния» (рис. 2.5), «Радуга», «Экран», «Горизонт», предназначенные для ретрансляции телевизионных программ и обеспечения дальней радиосвязи. Для них используются эллиптические синхронные орбиты с большим эксцентриситетом. Для непрерывной связи с регионом следует иметь три таких спутника. ИСЗ «Радуга», «Экран» и «Горизонт» также имеют круговые экваториальные геостационарные орбиты высотой 35500 — 36800 км, что обеспечивает круглосуточную связь через сеть наземных приемных телевизионных станций «Орбита».
Все эти спутники имеют динамическую стабилизацию относительно Земли и Солнца, что позволяет надежно ретранслировать получаемые сигналы, а также ориентировать панели солнечных батарей (СБ) на Солнце.
Рис. 2.5. Схема связного искусственного спутника Земли «Молния»:
1 — датчики системы ориентации; 2 — панели СБ; 3 — радиоприемники и передатчики;
4 — антенны; 5 — баллоны гидразина; 6 — двигатель коррекции орбиты; 7 — радиаторы
Метеорологические ИСЗ типа «Метеор» выводятся на круговые орбиты высотой 900 км. Они регистрируют состояние атмосферы и облачности, обрабатывают полученную информацию и передают ее на Землю (за один оборот ИСЗ обследует до 20% площади земного шара).
Геодезические ИСЗ предназначены для картографирования местности и привязки объектов на местности с учетом ее рельефа. В состав бортового комплекса таких ИСЗ входит: аппаратура, позволяющая точно фиксировать их положение в пространстве относительно наземных контрольных пунктов и определять расстояние между ними.
Навигационные ИСЗ типа «Цикада» и «Ураган» предназначены для глобальной навигационной спутниковой системы «Глонасс», «Космос-1000» (Россия), «Навстар» (США) — для обеспечения навигации морских судов, самолетов и других движущихся объектов. С помощью навигационно-радиотехнических систем судно или самолет может определить свое положение относительно нескольких ИСЗ (или в нескольких точках орбиты ИСЗ). Для навигационных ИСЗ предпочтительными являются полярные орбиты, т.к. они охватывают всю поверхность Земли.
Военные ИСЗ используются для обеспечения связи, управления войсками, осуществления различных видов разведки (наблюдения за территориями, военными объектами, запусками ракет, перемещениями кораблей и др.), а также для навигации самолетов, ракет, кораблей, подводных лодок и др.
Бортовое оснащение ИСЗ. Состав бортового оснащения ИСЗ определяется назначением ИСЗ.
В состав оснащения могут входить различные приборы и устройства для наблюдения. Эти приборы в соответствии с назначением могут работать на разных физических принципах. Например, на ИСЗ могут быть установлены: оптический телескоп, радиотелескоп, лазерный отражатель, фотоаппаратура с работой в видимом и инфракрасном диапазонах и т.п.
Для обработки результатов наблюдений и их анализа на борту ИСЗ могут устанавливаться сложные информационно-аналитические комплексы, использующие вычислительную технику и другие средства. Полученная и обработанная на борту информация, обычно в виде кодов, передается на Землю с помощью специальных бортовых радиокомплексов, работающих в различных диапазонах радиочастот. В составе радиокомплекса может быть несколько антенн различного типа и назначения (параболические, спиральные, штыревые, рупорные и др.).
Для управления движением ИСЗ и обеспечения функционирования его бортовой аппаратуры на борту ИСЗ устанавливается бортовой комплекс управления, который работает автономно (в соответствии с программами, имеющимися на борту), а также по командам, получаемым от наземного комплекса управления.
Для обеспечения электрической энергией бортового комплекса, а также всех бортовых приборов и устройств на ИСЗ устанавливаются панели солнечных батарей, собранных из полупроводниковых элементов, либо топливные химические элементы, либо ядерные энергетические установки.
Двигательные установки. На некоторых ИСЗ имеются двигательные установки, применяемые для коррекции траектории либо стабилизации вращением. Так, с целью увеличения времени существования низкоорбитных ИСЗ на них периодически включаются двигатели, переводящие спутники на более высокую орбиту.
Система ориентации ИСЗ. На большинстве ИСЗ применяется система ориентации, обеспечивающая фиксированное положение осей по отношению к поверхности Земли или каких-либо небесных объектов (например, для изучения космического пространства с помощью телескопов и других приборов). Ориентация осуществляется с помощью микроракетных двигателей или реактивных сопел, расположенных на поверхности ИСЗ или выступающих конструкциях (панелях, фермах и др.). Для стабилизации ИСЗ на средних и высоких орбитах требуются очень малые тяги (0,01... 1 Н).
Конструктивные особенности. ИСЗ выводятся на орбиты под специальными обтекателями, которые воспринимают все аэродинамические и тепловые нагрузки. Поэтому форма ИСЗ и конструктивные решения определяются функциональной целесообразностью и допустимыми габаритами. Обычно ИСЗ имеют моноблочные, многоблочные или ферменные конструкции. Часть оборудования размещается в термостатированных герметичных отсеках.
Автоматические межпланетные станции
Введение. Автоматические межпланетные станции (АМС) предназначены для полетов к Луне и планетам Солнечной системы. Их особенности определяются большой удаленностью функционирования от Земли (вплоть до выхода за сферу действия ее гравитационного поля) и временем полета (может измеряться годами). Все это предъявляет особые требования к их конструкции, управлению, энергоснабжению и др.
Общий вид и типовая компоновка АМС приведена на примере автоматической межпланетной станции «Вега» (рис. 2.6)
Рис. 2.6. Общий вид автоматической межпланетной станции «Вега»:
1 — спускаемый аппарат; 2 —орбитальный аппарат; 3 —солнечная батарея; 4 — блоки научной аппаратуры; 5 — малонаправленная антенна; 6 — остронаправленная антенна
Полеты АМС начались в январе 1959 года выводом на орбиту советской АМС «Луна-1», совершившей полет к Луне. В сентябре того же года «Луна-2» достигла поверхности Луны, а в октябре «Луна-3» сфотографировала невидимую сторону планеты, передав эти изображения на Землю.
В 1970 — 1976 годах с Луны на Землю были доставлены образцы лунного грунта, а на Луне успешно работали «Луноходы». Эти достижения существенно опередили американские исследования Луны автоматическими аппаратами.
С помощью серии АМС, запущенных в сторону Венеры (начиная с 1961 года) и Марса (с 1962 года), были получены уникальные данные о структуре и параметрах этих планет и их атмосфере. В результате полетов АМС установлено, что давление атмосферы Венеры составляет более 9 МПа (90 атм,), а температура 475°С; получена панорама поверхности планеты. Эти данные передавались на Землю при помощи сложной комбинированной конструкции АМС, одна из частей которой спускалась на поверхность планеты, а вторая, выведенная на орбиту спутника, принимала информацию и транслировала ее на Землю. Аналогичные сложные исследования проводились и на Марсе. В эти же годы богатая научная информация была получена на Земле с АМС «Зонд», на которых отрабатывались многие конструктивные решения для последующих АМС, в том числе по возвращении их на Землю.
Уникальными следует считать и полеты двух АМС «Вега» для одновременного обследования планеты Венера и кометы Галлея, со спуском отделяемой части аппаратов в атмосферу Венеры (рис. 2.7).
Рис. 2.7. Траектория полета АМС «Вега» к планете Венера и комете Галлея
Полеты американских АМС «Рейнджер», «Сервейер», «Маринер», «Викинг» продолжили исследования Луны, Венеры и Марса («Маринер-9» - первый искусственный спутник Марса, вышел на орбиту 13 ноября 1971 г. после успешного выполнения маневра торможения, рис. 2.9), а АМС «Пионер», «Вояджер» и «Галилей» достигли дальних планет солнечной системы: Юпитера, Сатурна, Урана, Нептуна, передав уникальные снимки и данные об этих планетах.
Рис. 2.9 «Маринер-9» - первый искусственный спутник Марса, вышел на орбиту 13 ноября 1971 г. после успешного выполнения маневра торможения:
1 — малонаправленная антенна; 2 — двигатель маневрирования; 3 — топливный бак (2 шт.); 4 — прибор ориентации на звезду Канопус; 5 — баллон в системе наддува двигательной установки; 6 —жалюзи системы терморегулирования; 7 — инфракрасный интерферометр-спектрометр; 8 — телевизионная камера с малым углом обзора;
9 — ультрафиолетовый спектрометр; 10 —телевизионная камера большим углом обзора; 11 — инфракрасный радиометр; 12 — остронаправленная антенна; 13 — датчики захвата Солнца (4 шт.); 14 — датчик слежения за Солнцем; 15 — антенна с умеренным коэффициентом усиления; 16 — панель солнечных элементов (4 шт.).
Орбиты AMС. Для полетов АМС к планетам солнечной системы им должна быть сообщена скорость, близкая ко второй космической скорости или даже превышающая ее, при этом орбита приобретает форму параболы или гиперболы. При приближении к планете назначения АМС попадает в зону ее гравитационного поля (грависферы), которое изменяет форму орбиты. Таким образом, траектория АМС может состоять из нескольких участков, форма которых определяется законами небесной механики.
Бортовое оснащение АМС. На АМС, предназначенных для исследования планет, в зависимости от решаемых задач устанавливаются разнообразнейшие приборы и устройства: телевизионные камеры с малым и большим углом обзора, фотоаппараты и фотополяриметры, ультрафиолетовые спектрометры и инфракрасные интерферометры, магнитометры, детекторы космических лучей и заряженных частиц, приборы для измерения характеристик плазмы, телескопы и др.
Для выполнения запланированных исследований некоторые научные приборы могут располагаться в корпусе АМС, другие выносятся из корпуса с помощью ферм или штанг, устанавливаются на сканирующих платформах, поворачиваются относительно осей.
Для передачи полученной и обработанной информации на Землю на АМС устанавливается специальная приемо-передающая радиоаппаратура с остронаправленной параболической антенной, а также бортовой управляющий комплекс с вычислительным устройством, формирующий команды для работы приборов и систем, находящихся на борту.
Для обеспечения бортового управляющего комплекса и приборов электроэнергией на АМС могут применяться панели солнечных батарей или ядерные радиоизотопные термоэлектрические генераторы (необходимые при длительных полетах к дальним планетам).
Особенности конструкции АМС. Несущая конструкция АМС имеет обычно легкий ферменный каркас (платформу), на котором крепится все оборудование, системы и отсеки. Для электронного и другого оборудования применяются герметичные отсеки с многослойной теплоизоляцией и системой терморегулирования.
АМС должны быть оснащены системой ориентации по трем осям с отслеживанием определенных ориентиров (например, Солнца, звезды Канопус). Пространственная ориентация АМС и маневры коррекции траектории осуществляются с помощью микроракетных двигателей или сопел, работающих на горячих или холодных газах.
АМС могут иметь двигательную установку орбитального маневрирования для корректирования траектории либо для перевода АМС на орбиту планеты или ее спутника. В последнем случае конструкция АМС значительно усложняется, т.к. для посадки станции на поверхность планет требуется ее торможение. Оно осуществляется с помощью тормозной двигательной установки либо за счет атмосферы планеты (если ее плотность достаточна для торможения, как на Венере). При торможении и посадке возникают значительные нагрузки на конструкцию и приборы, поэтому спускаемую часть обычно отделяют от АМС, придавая ей соответствующую прочность и защищая от нагрева и других нагрузок.
Спускаемая часть АМС может иметь на борту различную научно-исследовательскую аппаратуру, средства для ее передвижения по поверхности планеты (например, «Луноход» на АМС «Луна-17») и даже возвращаемый на Землю аппарат с капсулой грунта (АМС «Луна-16»). В последнем случае на возвращаемом аппарате устанавливается дополнительная двигательная установка, обеспечивающая разгон и коррекцию траектории возвращаемого аппарата.
Дата добавления: 2015-08-14; просмотров: 12700;