Заземление грозозащиты

Заземлители молниеотводов служат для отвода тока молнии в землю. Массовое устройство заземлителей (например, на воздушных ЛЭП с тросами) ставит задачу выбора наиболее экономичных заземлителей, обеспечивающих малое сопротивление растеканию тока при минимуме затраты металла.

 

 


Рис. 3.6 Характер процессов в грунте при прохождении через заземлитель импульсного тока

 

Основным назначением заземления грозозащиты является эффективное отведение тока молнии. Сопротивление заземлителя при протекании импульсного тока Rи отличается от сопротивления переменного тока , они связаны соотношением:

, (3.12)

где α – коэффициент импульса заземлителя.

Особенностями тока молнии являются его большая амплитуда и кратковременность. Обе эти особенности оказывают влияние на величину коэффициента импульса. При стекании с заземлителя тока плотностью δ в грунте возникает электрическое поле напряжённостью Еи= δρи , где ρи – удельное сопротивление грунта при стекании импульсного тока. С увеличением δ возрастает и напряжённость поля. Установлено, что с ростом напряжённости поля удельное сопротивление грунтов плавно падает. Этот эффект связан с явлением нелинейной проводимости, свойственным всем полупроводникам. При дальнейшем возрастании плотности стекающего с заземлителя тока напряжённость электрического поля вблизи заземлителя достигает пробивной напряжённости грунта 10-12 кВ/см.

Искрообразование приводит к резкому снижению падения напряжения вблизи заземлителя, что эквивалентно резкому падению ρи.. В расчётах заземлителей обычно пренебрегают падением напряжения в искровом разряде. Однако в искровой зоне градиенты достигают 1,2-1,4 кВ/см.

При дальнейшем повышении напряжения и с течением времени искровой разряд переходит в дуговой с очень малыми градиентами в дуговой зоне. Так как ток молнии достаточно велик, то около заземлителя возникают все возможные зоны: полупроводниковая, искровая, дуговая.

Чем меньше линейные размеры заземлителя, тем при заданном токе больше плотность стекающего тока δ. Поэтому коэффициент импульса α снижается с уменьшением размера сосредоточенного заземлителя. Коэффициент импульса снижается также при возрастании тока. Однако, очевидно, что напряжение на заземлителе U=IRи всё же растёт с ростом ρ, I, хотя кривая этого роста резко нелинейна.

Падение ρ вследствие искрообразования в грунте эквивалентно увеличению размеров заземлителя. Соответственно происходит как бы относительное сближение индивидуальных заземлителей в составной конструкции и снижения её коэффициента использования. Тогда, сопротивление составного заземлителя:

, (3.13)

где ηи – коэффициент использования заземлителя в импульсном режиме.

Импульсное искрообразование в грунте происходит с довольно большим запаздыванием. Вследствие этого импульсные коэффициенты заземлителей оказываются зависимыми от времени.

Импульсный характер воздействия напряжения приводит к необходимости подразделять заземлители на сосредоточенные и протяжённые. К первым принадлежат заземлители, протяжённость которых достаточно мала, чтобы можно было считать потенциалы во всех точках заземлителя одинаковыми. Протяжёнными называются заземлители, вдоль которых необходимо учитывать волновой процесс распространения напряжения и тока. Обычно это заземлители горизонтального типа. Каждый из лучей такого заземлителя может быть представлен цепочечной схемой замещения длинной линии с удельными индуктивностью L0 и нелинейной проводимостью g0 (рис.3.7) . В первые моменты приложения импульсной волны напряжение на дальних участках заземлителя мало. В эти моменты времени отвод тока с заземлителя осуществляется только на начальных его участках. Затем напряжение вдоль заземлителя выравнивается и весь заземлитель используется для отвода тока молнии. Использование луча заземлителя в заданный момент времени может быть охарактеризовано отношением Ul/U0 , где Ul и U0 – напряжение в конце и начале луча. Чем ближе Ul/U0 к единице, тем лучше использование заземлителя. Чем меньше Ul/U0 , тем протяжённее заземлитель.

Рис. 3.7 Цепочечная схема замещения протяжённого заземлителя

 

Так как соотношение Ul/U0 всегда растёт с уменьшением длины луча заземлителя, то с точки зрения экономии металла выгоднее заземлитель выполнять трёх и четырёхлучевым. При дальнейшем увеличении числа лучей снижается коэффициент использования заземлителя вследствие взаимного экранирования лучей, кроме того, осложняются земляные и монтажные работы. Длина лучей в заземлителе выбирается по условиям обеспечения необходимого Rи.

Как и сосредоточенные заземлители, протяжённые заземлители характеризуется импульсным коэффициентом использования α, который по-прежнему падает с увеличением тока и удельного сопротивления почвы. Однако вследствие резкого спада напряжения вдоль протяжённого заземлителя большой длины коэффициент α может оказаться больше единицы. Такое недоиспользование длины является характерной особенностью протяжённого заземлителя.

 

6. Расчёт заземлителей.

Расчёт заземляющего устройства носит поверочный характер в том случае, когда схема заземления задана, либо носит чисто расчётный характер по заданной величине нормированного сопротивления создаётся его схема. Во всех случаях при расчёте необходимой величиной является удельное сопротивление грунта, причём наиболее желательными являются результаты непосредственных измерений. Величины удельных сопротивлений подвержены сезонным изменениям, причём наибольшее влияние оказывают влажность, температура, степень промерзания, наличие солей.

Чем глубже расположен заземлитель, тем стабильнее оказывается сопротивление грунта и лучше условия для растекания тока. Чтобы исключить вероятность повышения удельного сопротивления, в расчётах используется удельное сопротивление, полученное непосредственным измерением ρизм на данном участке, умноженное на коэффициент сезонности ψ , учитывающий возможность высыхания и замерзания грунта: ρрасчизм ψ.

При конструировании заземляющих устройств, как правило, используются стандартные элементы: трубы, уголковая и полосовая сталь. Для всех этих элементов выведены расчётные формулы сопротивления растеканию тока промышленной частоты, учитывающие линейные размеры элементов и глубину их заложения. Следует оговориться, что при расчёте заземляющих устройств могут использоваться различные расчётные формулы, полученные разными исследователями. В данной работе приведён один из возможных вариантов расчёта заземляющего устройства, который нисколько не умаляет правильность других методов.

Для всех элементов выведены расчётные формулы сопротивления растеканию тока промышленной частоты, учитывающие линейные размеры элементов и глубину их заложения, которые указаны в таблице 3.2.

Требования, предъявляемые к заземляющему устройству в отношении величины сопротивления, в большинстве случаев не могут быть удовлетворены одиночным заземлителем.

Практически для получения приемлемых величин сопротивления создают сложный заземлитель, состоящий из n параллельно соединённых одиночных заземлителей. Можно было бы предположить, что общее сопротивление такого сложного заземлителя будет в n раз меньше сопротивления каждого элемента.

На самом деле, при использовании сложного заземлителя поля растекания токов с отдельных электродов перекрывают друг друга и сопротивление всего заземлителя оказывается больше предполагаемого. Увеличение сопротивления сложных заземлителей учитывается коэффициентом использования η.

Значения коэффициентов использования зависят от конструктивного выполнения сложного заземлителя и для горизонтальных и вертикальных заземлителей приведены в таблицах 3.3, 3.4.

Расчётная формула для сложного заземлителя из полосовых однотипных заземлителей с учётом взаимного экранирования имеет вид:

. (3.14)

 

Для сложного заземлителя, состоящего из n вертикальных электродов и объединяющих их горизонтальных:

, (3.15)

где - принимается для конкретной схемы всего заземлителя.

Не менее важным следствием использования сложных заземлителей, кроме снижения общего сопротивления, является повышение потенциала на участках между электродами. Общее выравнивание потенциала значительно снижает шаговое напряжение и напряжение прикосновения в зоне наиболее вероятного нахождения обслуживающего персонала.

Как видно из рис. 8, вокруг сложного заземлителя происходит своеобразное распределение потенциалов: между параллельно соединёнными одиночными заземлителями потенциалы во всех точках земли выше, чем они были бы для каждого заземлителя в отдельности, и величины этих потенциалов нигде не опускаются до нуля.

 

Рис. 3.8 Характер потенциальной кривой для сложного заземлителя.

 

Такое свойство сложного заземлителя: повышать потенциал земли при сближении параллельно соединённых одиночных заземлителей, даёт возможность удерживать напряжение прикосновения и шага в защищаемой зоне на безопасном уровне. Это свойство используется в контурном заземлении, представляющем собой замкнутый контур, охватывающий участок, на котором находятся заземлённые части установок. При контурном заземлении заземлители располагаются по периметру защищаемой территории, а при большой ширине её – закладывают так же внутри неё.

 

 

Таблица 3.2

Схема заземлителя Расчётная формула Примечание
Горизонтально проложенная в земле полоса
Вертикальный электрод в виде трубы, стержня или уголка
Вертикальный электрод в виде трубы, стержня или уголка, верхний конец которого погружен в землю
    Кольцо    

 

Таким образом, расчёт сопротивления заземления с учётом импульсных свойств рекомендуется производить в следующей последовательности:

1. принимается конкретная схема соединения элементов заземления;

2. по известной величине удельного сопротивления грунта (обычно измеряется на месте) находят его расчётную величину умножением на коэффициент сезонности;

3. определяют сопротивление заземления для каждого типа электродов, применительно к стационарному режиму;

4. по принятой величине импульсного тока находят ток, стекающий с каждой ветви, учитывая, что ток распределяется обратно пропорционально сопротивлениям заземлителей;

5. по найденной величине тока в каждом заземлителе и расчётной величине удельного сопротивления грунта находят коэффициент импульса и импульсную величину сопротивления растеканию;

6. находят импульсное сопротивление сложной системы, вводя в расчёт импульсное сопротивление заземлителей и коэффициент использования для заданной схемы.

 

Вопросы для самопроверки.

1. Сформулировать назначение заземления.

2. Перечислить способы заземления нейтрали. Определить их применение в различных системах электроснабжения.

3. Для чего используется защитное заземление?

4. Что такое заземление для грозозащиты? Какие особенности существуют в его работе?

5. Привести порядок расчёта заземляющего устройства для грозозащиты.








Дата добавления: 2015-08-26; просмотров: 3129;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.