Алевролиты
Алевриты, а если они сцементированы, то алевролиты распространены несколько больше, чем песчаники. К ним относят породы, где размер преобладающих обломков 0,01-0,1 мм. Выделение их по генетической классификации (табл.14) противоречит тому, что они как и песчаники делятся на две генетические группы. Крупнозернистые алевролиты тяготеют к мелкозернистым песчаникам, которые переносятся частично во взвеси, а частично качением по дну и поэтому окатаны. Мелкозернистые алевритовые обломки все переносятся во взвеси с глинистым материалом, и поэтому образуют парагенез глинисто-алевритовых пород.
Минеральный состав алевролитов, особенно мелкозернистых, иной, чем у песчаников. В принципе это более зрелые породы, в них устойчив только кварц, а большинство остальных минералов в алевритовой фракции неустойчивы. Алевриты, благодаря высокому содержанию глины часто бывают окрашены в красный, зеленый цвет, а когда в них много органического вещества, то в черный. Алевролиты, как и песчаники, полигенные: дельтовые, донные, речные, эоловые и т.д. Поскольку алевролиты в соответствии с рядом механической дифференциации образуются на большей глубине, чем песчаники, т.е в более холодной воде, то цемент в них по составу более характерен глинистый, чем известковый. Алевролиты обычно бывают смешанными – глинисто-алевритового состава и, более того, образуют парогенез глинистых и алевритовых прослоек; коллекторские свойства их, в особенности мелкозернистых разностей невелики, и часто алевролиты вместе с глинистыми породами оказываются флюидоупорными.
Глины
Более 50% магматических и метаморфических пород составляют алюмосиликаты - полевые шпаты. На поверхности одни из них – калиевые полевые шпаты и кислые плагиоклазы – малоустойчивы, а другие – основные плагиоклазы – неустойчивы. В первую очередь полевые шпаты теряют активные щелочные подвижные элементы (кальций, натрий, калий), которые замещаются гидроксильной группой; кристаллическая решетка их разрыхляется, и каркасные структуры трансформируются в слоистые. Переход полевых шпатов в глинистые минералы – один из самых грандиозных энергетически, но мало заметных процессов осадкообразования. Как полевые шпаты составляют более половины магматических пород, так глинистые минералы – более 60% осадочных пород. Одна из особенностей глинистых минералов - это то, что они не образуют крупных кристаллов, их чешуйки редко достигают 0,001 мм. Группу глинистых минералов делят на каолинитовые, гидрослюдистые, монтмориллонитовые и хлоритовые. К каждой из групп относят несколько близких друг к другу минералов. Глинистые минералы разных групп легко перемешиваются друг с другом. Глинистые породы очень разнообразны по составу как самих глинистых минералов, так и примесей - обломочного или хемогенного материала. Чистые мономинеральные глины скорее исключение, обычны смешанные глинистые породы.
В коре выветривания при разложении полевых шпатов в кислой среде образуются минералы группы каолинита, а в щелочной среде - гидрослюды и хлориты. Монтмориллонит обычно образуется при подводной переработке вулканического пепла в слабощелочной среде; это так называемые киловые глины. Например, в заливе Коктебель они обнажаются на дне залива, их собирают для отбеливания тканей. Глинистые минералы помимо выветривания могут образовываться путем синтеза из растворов и особенно на этапе диагенеза и эпигенеза в пористых проницаемых породах в связи с миграцией флюидов. Характерно, что в эпигенезе происходит трансформация монтмориллонитовых глин в гидрослюдистые. Глубже исчезает каолинит, и на конечных стадиях эпигенеза сохраняются лишь устойчивые минералы – гидрослюда и хлорит. Глинистые породы уплотняются и переходят в неразмокающие аргиллиты и сланцы.
В зоне метаморфизма образуются новые минералы - серицит, мусковит и полевые шпаты.
3.6. Основные типы карбонатных пород.
Карбонатные породы более чем наполовину сложены солями угольной кислоты Н2СО3, которая, как известно, в природе практически не существует. Кроме карбонатов встречаются гидрокарбонаты, содержащие ион ОН-. Угольная кислота образует с щелочными и щелочно-земельными металлами соли, часть которых встречается в природе.
K2СО3 - каустическая сода, в природе практически не встречается, весьма растворима.
Nа2СО3 - пищевая сода, в природе крайне редка, весьма растворима.
СаСО3 - кальцит, весьма распространен, слагает известняки, образует протяженные пласты и горные массивы.
СаMg (CO3)2 - доломит, встречается в природе, как и кальцит, но несколько менее распространен.
MgCO3 магнезит, встречается в природе, но редок.
FeCO3 - сидерит, встречается в природе, широко распространен в виде желваков, конкреций.
Таким образом, реальную роль в составе осадочных образований играют кальцит, доломит и сидерит, составляющие до 15-20% массы осадочных пород. Рассмотрим происхождение химических элементов в составе карбонатов, определим, какие магматические горные породы они слагали до этого. Са определяет состав алюмосиликатов – основных плагиоклазов. Mg и Fe определяют состав фемических минералов - оливина, пироксенов, роговых обманок, а эти минералы, в свою очередь, образуют ультраосновные породы - дуниты и перидотиты, которые слагают, с одной стороны, мантию Земли, ее глубинную зону, подстилающую земную кору, а с другой – каменные метеориты. Эти же минералы слагают также базальты, которые выплавлялись из ультраосновных пород. Таким образом, кальций, железо и магний - элементы первичных глубинных магматических пород Земли. Вторая составляющая карбонатов - СО3, вернее, углекислый газ СО2. На Земле он существует в атмосфере (всего 0,04%), растворен в океанах, а вот на Венере и Марсе он образует атмосферу. Если бы на Земле повысилась температура настолько, что испарились бы океаны, сгорело бы все живое и даже разложились бы карбонаты, выделив СО2, то новая атмосфера Земли стала бы такой, как сейчас у Венеры. Таким образом, вторая часть карбонатов – это первичная атмосфера Земли, теперь окаменевшая. Итак, карбонаты геохимически - это синтез первичных пород и окаменевшей первичной атмосферы.
Дата добавления: 2015-06-27; просмотров: 2532;