СВОЙСТВА ШЛАКОВ
Свойства шлаков определяются их составом и температурой. На практике при проведении расчетов вместимости металлургических агрегатов, при конструировании плавающих на границе шлака и металла устройств для отсечки шлака и в других случаях необходимо знание плотности шлака. Основные компоненты шлака при комнатной температуре имеют следующую плотность, г/см3: 1) «легкие» компоненты — Si02 (тридимит) 2,26, СаО 3,4, MgO 3,65; 2) «тяжелые» компоненты — МпО 4,5, Fe2O3 5,24, FeO 5,7. Плотность шлака практически определяется содержанием в нем «тяжелых» оксидов (рис. 9.9). Плотность реальных шлаков во время плавки непосредственно в сталеплавильном агрегате изменяется в зависимости от степени вспенивания шлака.
Вязкость жидких сталеплавильных шлаков колеблется в широких пределах, причем характер изменения вязкости от температуры зависит от со става шлака. Из рис. 9.10 видно, что, в то время как вязкость кислых шлаков по мере изменения температуры изменяется плавно («длинные» шлаки), основные шлаки имеют короткий температурный интервал перехода из жидкого в твердое состояние («короткие» шлаки); вязкость таких шлаков обычно резко возрастает при снижении температуры ниже 1500 ºС.
Рис. 9.8.Толщина слоя шлака l в 160-т мартеновских печах в момент расплавления ванны
Рис. 9.9.Зависимость плотности основных
шлаков от содержания оксидов железа и марганца
Вязкость основных шлаков в значительной степени зависит от содержания таких тугоплавких составляющих, как Сг2О3 (t пл= 2280 °С). и MgO (tпл = 2800 °С). При продувке кислородом расплава, содержащего более 2 % Сг, содержание Сг2О3 в шлаке может превысить 20 %. Температура плавления такого шлака возрастает настолько, что шлак становится комкообраз-ным. При интенсивном разрушении футеровки агрегата в шлаке начинает увеличиваться содержание MgO, вязкость такого шлака растет вплоть до превращения шлака в вязкую, полутвердую массу.
Теплоемкость шлаков в зависимости от состава и температуры изменяется в довольно узких пределах: 0,8— 1,2кДж/(кг*К).
Жидкие шлаки обладают электрической проводимостью, что является показателем их ионного строения. Электрическая проводимость основных шлаков выше, чем кислых. При повышении температуры электрическая проводимость увеличивается. При температурах сталеплавильных процессов электрическая проводимость шлаков в зависимости от их состава колеблется в пределах от 0,2 до 1,0 Ом-1 • см -1. Данные об электрической проводимости шлаков необходимы при организации процессов электроплавки, электроподогрева шлака в ковше при внепечной обработке металла, при электрошлаковом переплаве и т. п. Электрическая проводимость обычно выше у шлаков, обладающих повышенной теплопроводностью и пониженной вязкостью. Теплопроводность шлаков изменяется в зависимости от состава в широких пределах; при повышении температуры теплопроводность возрастает. Реальные шлаки представляют собой многокомпонентные системы, поэтому сложно определить их температуру плавления, зная температуры плавления составляющих этих шлаков. Обычно используют данные тройных диаграмм состояния шлаковых систем, позволяющие приближенно судить о температурах плавления реальных шлаков более сложного состава. Из диаграммы состояния СаО-А12О3 (рис. 9.11) следует, что при введении в основной шлак А12О3 (в боксите много А12О3)
Рис. 9.11.Диаграмма состояния СаО-А12О3
Рис. 9.12.Зависимость температуры плавления шлаков /щ, от содержания в них SiO2
температура плавления шлака снизится (или при неизменной температуре возрастет ререгрев шлака над температурой плавления) и соответственно понизится вязкость шлака и повысится его жид-коподвижность. На температуру плавления шлаков в значительно степени влияет изменение содержания в них кремнезема (рис. 9.12). Содержание SiO2 в шлаке определяет его основную характеристику: основный шлак или кислый.
Дата добавления: 2015-06-22; просмотров: 1452;