Баллистика на собственной шкуре
Аварии случались и выше, когда уже корабль выходил на орбиту. Вот какая ситуация, к примеру, сложилась 10–12 апреля 1979 года во время полета Н. Рукавишникова и гражданина Болгарии Г. Иванова. (Кстати, на самом деле болгарин вовсе не Иванов, а Какалов. Но его перед полетом переименовали — посчитали, что его фамилия по-русски звучит неприлично.)
Экипаж должен был состыковаться с орбитальным комплексом «Салют-6» — «Союз-32», но при подходе к станции на корабле «Союз-33» произошла авария сближающе-корректирующей установки. Стыковку пришлось отменить.
Корабль по инерции вращался вокруг Земли на орбите искусственного спутника. Что делать дальше? Космонавты на корабле, специалисты наземного Центра управления полетами тщательно проанализировали создавшееся положение и приняли решение: «Приземляться!» Однако выполнить такое решение было тоже не просто.
Как уже говорилось, обычно корабль входит в плотные слои атмосферы плавно, по так называемой аэродинамической траектории. Перегрузки космонавтов, нагрев поверхности корабля из-за трения о воздух растут постепенно… Но в данном случае корректировать траекторию было нечем — ведь основная двигательная установка оказалась неисправной. Оставался аварийный вариант — дать тормозной импульс резервной установкой, а потом опять-таки производить спуск по неуправляемой, баллистической траектории.
Летчики-космонавты Н. Н. Руковишников (слева) и Г. И. Иванов
«Впечатление было такое, что на грудь въехал „запорожец“», — вспоминал потом Николай Николаевич Рукавишников.
Тренированные люди с честью выдержали испытание. Оказался достаточным запас прочности и у техники…
Но, пожалуй, самым драматичным было возвращение со станции «Мир» корабля «Союз ТМ-5» с экипажем в составе Владимира Ляхова и первого афганского космонавта Абдулы Моманда. Неприятности начались, когда на границе дня и ночи не сработал в штатном режиме инфракрасный датчик вертикали. Из-за этого бортовой компьютер отказался запустить двигатель на торможение. Посадка была отложена.
И вдруг через 7 мин. двигатель неожиданно включился сам! Ляхов немедленно выключил его — иначе садиться пришлось бы уже в Китае. Однако двигатель вновь заработал «как ему вздумается», хотя тормозной импульс так и не выдал. В довершение всего компьютер, решивший, что корабль уже сошел с орбиты, запустил процесс разделения отсеков. Если бы от аппарата успел отделиться агрегатный отсек с тормозным двигателем, космонавты, оставшись на орбите в спускаемом аппарате, были бы обречены на гибель: запаса воздуха у них было лишь на спуск и посадку. Быстрая реакция Ляхова спасла экипажу жизнь.
Спуск был отложен на сутки, которые экипаж провел без удобств, поскольку бытовой отсек с ассенизационным устройством — попросту говоря, с туалетом — уже успел отделиться. К счастью, на следующий день все прошло как надо и космонавты благополучно приземлились.
Системы спасения на «шаттлах»
Ну а если бы двигатели на каком-либо корабле совсем отказали? Что тогда?.. И над этой проблемой думали специалисты. «Несмотря на все принимаемые меры, нельзя исключать из рассмотрения ситуацию, когда космический корабль может нуждаться в срочной помощи…» Это сказал еще в 1975 году член-корреспондент АН СССР К. Д. Бушуев, технический директор советской стороны международного проекта «Союз — Аполлон».
Команда «Челленджера»
Именно тогда наши и американские специалисты привели в соответствие стыковочные устройства на своих кораблях, чтобы они могли состыковаться друг с другом и спасти терпящих бедствие на орбите.
Поначалу ведь каждая сторона развивала свои спасательные системы самостоятельно. Правда, идентичность решаемых задач привела к тому, что системы на кораблях «Меркурий» и «Аполлон» получились сходными с нашими. Правда, в «Аполлоне», который создавался одновременно с «Союзом», спускаемый аппарат находился в самом верху и не было необходимости спасать весь приборно-агрегатный отсек. Отпадала нужда и в решетчатых крыльях, так как относительная масса двигателя системы спасения уменьшалась.
Тем не менее и в американских, и в российских кораблях масса спасательной ракеты довольно велика, и в нормальном полете, когда все работает «штатно», через 2 мин. после старта двигательная установка САС сбрасывается. Еще через полминуты отстреливается головной обтекатель, а корабль и ракета продолжают путь на орбиту.
А вот когда очередь дошла до создания многоразовых космических «челноков», тут подход к проблеме спасения оказался диаметрально противоположным.
Наши специалисты создали довольно сложную многоконтурную систему спасения. Первый контур спасения заключался в том, что если авария случалась на стартовом столе, экипаж мог катапультироваться, как это делалось на «Востоке». Если авария произошла бы на начальном этапе полета, ракета-носитель «Энергия» должна была изменить траекторию полета и повернуть к Земле. «Буран» отстыковывался и садился самостоятельно на взлетную полосу на Байконуре. Если проблемы происходили на более позднем этапе полета и энергетические возможности носителя позволяли, «Буран» выводился на одновитковую траекторию с дальнейшей посадкой. Если же и эта схема не срабатывала, космический корабль отделялся и пытался сесть на промежуточном аэродроме. И наконец, если авария случилась бы непосредственно при посадке, снова сработала бы система катапультирования пилотов.
Идея же спасательных кабин, модная еще в 60-х годах, была забракована из-за чрезмерной сложности — по сути, пришлось бы строить корабль в корабле. Тем не менее она не отринута окончательно. Один из ее идеологов, ныне ставший гражданином Израиля, пытается приспособить ее для спасения экипажей гиперзвуковых самолетов, с одной стороны, и пассажиров аэробусов — с другой. В обоих случаях от самолета отделяется капсула с экипажем или пассажирами и опускается на своей парашютной системе.
А вот американцы в своем шаттле уделили системе спасения недостаточное внимание. Единственное, что было предложено: в случае аварии астронавты выставляют из кабины специальный шест и по нему по очереди соскальзывают наружу с индивидуальными парашютами.
На практике эта система так ни разу не была использована. А две катастрофы, случившиеся с «Челленджером» и «Колумбией» — одна на взлете, вторая — при заходе на посадку, стоили жизни 14 членам двух экипажей. Не спасся никто.
Можно ли было хоть что-то предпринять? Давайте попробуем разобраться.
…Итак, 28 января 1986 года в 11 ч. 38 мин. при хорошей видимости и слабом ветре стартовал многоразовый транспортный космический корабль «Челленджер». Это был 25-й старт кораблей такого типа, и НАСА готовилось торжественно отметить юбилей. Но праздника не получилось. Спустя 73,226 с после запуска, когда «Челленджер» находился на высоте 14,3 км и зрителей уже отпустило волнение первых мгновений старта, раздался взрыв. Корабль исчез в облаке огня и дыма…
Инженер-испытатель космических аппаратов Ю. М. Марков так прокомментировал причины трагедии и ее развитие: «Уже через полсекунды после включения твердотопливных ускорителей камеры, снимавшие запуск, зафиксировали черный дым в области стыка средней и нижней секций правого твердотопливного ускорителя (ТТУ). На 59-й секунде кинопленка зарегистрировала пламя на том же стыке. Мощная струя огня прожгла топливный бак снизу, а затем сорвала ТТУ с нижнего узла крепления. Повернувшись на верхнем узле крепления, как на оси, он пробил топливный бак сверху. Жидкий водород смешался с жидким кислородом. Произошел взрыв…»
Носовая часть космоплана, где было помещение для экипажа, оторвалась от средней части фюзеляжа, продолжала подъем до 20-километровой высоты и только затем стала падать. Пролежавшая в морской воде полтора месяца магнитная лента воспроизвела переговоры астронавтов, в частности, восклицание пилота Смита. Видимо, он и командир Скоби успели заметить надвигающуюся опасность. В момент отрыва носовой части перегрузки не были так велики, чтобы астронавты погибли сразу. Они могли находиться в сознании до того момента, когда носовая часть ударилась об воду.
Вывод о том, что по крайней мере трое астронавтов не погибли в момент взрыва, был сделан на основании осмотра поднятых со дна четырех дыхательных аппаратов. Командир и пилот могут воспользоваться своими аппаратами, только встав с кресла, ибо аппараты монтируются за спинками. Так вот запас кислорода в трех аппаратах был израсходован почти полностью, а у аппарата Смита на три четверти…
Таким образом, катастрофа «Челленджера» произошла не мгновенно. У астронавтов было в запасе более минуты, чтобы спастись. Если бы, конечно, в их распоряжении была соответствующая система. Однако «теория, лежащая в основе конструкции шаттлов, сводилась к тому, что твердотопливные ускорители устроены таким образом, что никогда не откажут» — так сказал позднее астронавт Дж. Асеф по этому поводу.
А ведь особых поводов для благодушия не было. Запуски шаттлов неоднократно находились на грани трагедии; сроки стартов много раз переносились из-за отказов то одной, то другой системы… Тем не менее кардинальные меры не принимались. Слишком это дорого и хлопотно…
Впрочем, после трагедии руководители НАСА потратили два года и множество денег на внедрение ряда усовершенствований в конструкцию шаттла, модернизацию твердотопливных ускорителей, изменение состава герметизирующей мастики на стыках и т. д.
Кроме того, специалисты пришли к мнению, что надо несколько видоизменить всю схему запуска. Предлагалось вообще отказаться от твердотопливных ускорителей, и производить запуск за счет жидкостных двигателей. Эксперты предлагали также уменьшить состав экипажа: «Пусть в полет отправляются всего 2–5 человек, которые обеспечиваются средствами аварийного спасения на старте».
Однако к мнению этих специалистов не прислушались. И как позднее выяснилось, напрасно. За первой трагедией последовала вторая…
Корабль «Колумбия» отправился в путь с мыса Канаверал утром 16 января 2003 года, в четверг. Сам старт выглядел безупречным. Однако на следующий день эксперты, просматривая видеозапись, усмотрели, что на 80-й секунде полета фрагмент пеноизоляции размером с атташе-кейс и весом чуть больше килограмма отвалился от огромного топливного бака, ударил в левое крыло «Колумбии» и мгновенно испарился в виде белого облачка.
В НАСА срочно собрали группу инженеров, чтобы попробовать оценить последствия этого инцидента. Эксперты предположили, что отвалившийся кусок попал по нижней поверхности крыла, а значит, удар был скользящим. Но для начала они рассчитали энергию соударения для лобового столкновения.
Последний раз аналогичный случай произошел с «Колумбией» в 1992 году. Почти такой же обломок пробил тогда в теплоизоляционной плитке отверстие менее 3 см в глубину и примерно 10 см в длину. Однако защитный слой остался цел. И «Колумбия» благополучно вернулась на Землю.
Эксперты решили, что нынешнее столкновение очень похоже, и смоделировали степень повреждения применительно к касательным ударам под углами до 16°. Расчеты показали, что ущерб должен быть минимальным. «В итоге инцидент сочли несущественным», — сказал по этому поводу руководитель программы космических кораблей многоразового использования Рон Диттемор.
Позднее в НАСА, впрочем, предположили, что отлетевший кусок мог быть обледеневшим, то есть был гораздо тяжелее и «бронебойнее». Именно он и оказался причиной катастрофы. Получается, что в США не извлекли уроков из трагедии космического «челнока» «Челленджер» в 1986 году. Руководство НАСА знало, что во время взлета выхлопные газы могут разрушить резиновые кольцевые уплотнители в твердотопливных ракетных ускорителях. Но ничего не сделало для предотвращения аварии. Это было роковой ошибкой.
Первые признаки неисправности появились при возвращении «Колумбии» 1 февраля в 7 ч. 52 мин. над Калифорнией. Когда шаттл стремительно несся по еще темному утреннему небу, астроном из Калифорнийского технологического института Том Бизли разглядел, что от «челнока» отделяются небольшие яркие точки. А еще через несколько мгновений оторвался фрагмент побольше и поярче. В 20 км от института это явление также наблюдала астроном Кармен Санчес-Контрерас из радиообсерватории Оуэнс-Вэлли. «Я увидела второе яркое пятно, которое было намного больше. Оно оторвалось совсем неожиданно, как будто от корабля что-то отделилось», — рассказала она корреспондентам New Scientist.
В тот же момент Центр управления в Хьюстоне получил первый предупреждающий сигнал о нештатном повышении температуры в нише левого шасси. В 7 ч. 53 мин. четыре температурных датчика на задней кромке левого крыла неожиданно полностью отказали. Вскоре датчики внутри фюзеляжа над левым крылом зафиксировали, что за 5 мин. температура выросла на 30° — вчетверо выше нормы для этой зоны.
Еще через минуту температура существенно поднялась и в тормозной системе левого крыла. Затем система управления полетом «Колумбии» обнаружила повышенное сопротивление по левому борту и начала компенсировать его при помощи элевонов — рулей управления полетом, расположенных в задней части треугольного крыла. Вслед за этим совершенно неожиданно включились два небольших двигателя малой тяги.
Однако сопротивление постоянно росло. Бортовой компьютер не справлялся с управлением. В 7 ч. 59 мин. над Западным Техасом корабль еще продолжал бороться за существование. А центр сообщил экипажу об отказе датчиков. Рик Хасбэнд начал отвечать, однако посредине фразы связь оборвалась. Больше астронавтов никто не слышал.
Корабль стремительно летел над Восточным Техасом на высоте 63 км в 18 раз быстрее звука. А на земле люди с ужасом наблюдали, как он разваливается на множество пылающих обломков.
Версии о причинах трагедии стали появляться уже через несколько минут после того, как стало ясно, что корабль погиб. Возможность террористического акта исключили — высота и скорость делали «челнок» недосягаемым для атаки с земли переносной ракетой класса «земля — воздух». Диверсия до запуска тоже выглядела фантазией.
Расследование причин катастрофы показало, что наиболее вероятной причиной оказался все же злосчастный удар куском пенопласта. В результате от теплоизоляционного покрытия отвалилась одна или несколько плиток в районе створки шасси. Именно это и послужило причиной, что алюминиевый корпус шаттла перегрелся из-за трения при спуске и загорелся. У алюминия низкая температура плавления — всего 660 °C, а тут на него воздействовала плазма с температурой выше 1000°. Поверхность левого крыла могла начать вспучиваться, а плитки отваливаться. Пожар быстро распространился по всему кораблю. И он в итоге развалился на куски.
При этом шансов выжить в катастрофе у экипажа «Колумбии» не было: индивидуальные спасательные средства — парашюты — могли бы сработать лишь на более низкой высоте. По словам российского космонавта Бориса Морукова, имеющего опыт полетов на корабле «Атлантис» — «близнеце» погибшего шаттла «Колумбия», — при спуске «в кабине все сидят в специальных костюмах, обеспечивающих автономное существование». Однако шаттл должен был находиться в атмосфере, чтобы экипаж мог осуществить аварийное покидание корабля и приземление на парашютах, подчеркнул Моруков.
Времени на это у семи астронавтов не оказалось.
Не могли они и отсидеться в космосе до прибытия спасательной экспедиции. Во-первых, для этого эксперты НАСА должны были принять такое решение на Земле и предупредить экипаж о грозящей опасности. Во-вторых, нужно было срочно подготовить запасной корабль и отправить его в космос. Ни то ни другое в НАСА сделано не было.
Не имела возможности «Колумбия» и состыковаться с Международной космической станции. Для этого экипажу нужно было сменить орбиту и высоту полета, на что у «Колумбии» не было запасов топлива.
В общем, похоже, в НАСА понадеялись на русский авось. А он-то как раз и не вывез.
И все-таки можно ли спасти экипаж в подобной ситуации?
Системы аварийного спасения на многоразовых крылатых космических кораблях — советском «Буране» или американских шаттлах, как уже говорилось, принципиально отличаются от тех систем, что применяются при одноразовых запусках. Во-первых, сам «челнок» имеет большие габариты и массу. Он не делится подобно одноразовому капсульному кораблю на небольшие отсеки, а представляет собой единую конструкцию. Масса же шаттла — почти 120 т. Даже для простого отстрела корабля от аварийных стартовых ускорителей нужны очень большие мощности. При проектировании шаттлов и «Бурана» инженеры первоначально планировали оснастить их специальными твердотопливными двигателями спасения, но последние оказались чрезмерно тяжелы, и от этой затеи отказались.
Во-вторых, самолетная схема построения шаттла требует для безопасного полета определенного сочетания скорости и угла атаки. Обеспечить его при спасении «челнока» в начале полета крайне трудно, если вообще возможно. А иначе крылатый аппарат может попросту разрушиться от чрезмерных аэродинамических нагрузок.
Однако говорить о том, что на шаттле совсем нет системы спасения, было бы неверно. Она имеется, причем довольно сложная, но у нее есть «мертвые зоны», когда она бесполезна. Одна из таких зон для американских «челноков» — первые 2 мин. полета, пока работают стартовые твердотопливные ускорители. Их считали практически безотказными, но именно они подвели в роковом полете «Челленджера».
В случае аварии на стартовой позиции, случившейся до запуска основных двигателей, астронавты могут экстренно покинуть корабль и в кабинке-корзине, подвешенной к тросу, скатиться с башни обслуживания в защитный бункер. С той же целью на стартовом комплексе «Бурана» был предусмотрен специальный спасательный желоб.
В полете экипаж шаттла теоретически может выпрыгнуть с парашютом. Но это возможно лишь при управляемом планировании на высоте не более 6 км и скорости не свыше 370 км/ч. При этом, чтобы не удариться о крыло, членам экипажа необходимо покидать аппарат, скользя по затейливо изогнутой телескопической штанге, выдвинутой на несколько метров через боковой люк.
Условия для спасения таким способом могут возникнуть лишь на посадке. Поэтому при выведении на орбиту задача аварийного спасения в основном возлагается на носитель и сам космический «челнок». Везде, где возможно, их системы, задействованные «на выживание», дублируются.
Так, при отказе одного из трех маршевых двигателей шаттл может выйти на низкую аварийную орбиту. При более серьезных неприятностях запускается специальная программа, и шаттл должен будет экстренно приземлиться на один из многочисленных запасных аэродромов, расположенных в Европе, Северной Америке и Азии. Более того, теоретически «челнок» может совершить посадку на любом аэродроме, где есть взлетно-посадочная полоса длиной не менее 3 км.
При создании корабля «Буран» тоже анализировалось около 500 возможных нештатных ситуаций. Подобно шаттлу, при серьезных отказах ракета-носитель «Энергия» переключалась на аварийную программу, которая в зависимости от этапа полета и тяжести ситуации выводила корабль в тот или иной район возможной посадки. На случай аварийной посадки, кроме основного аэродрома, расположенного на космодроме Байконур, предполагалось ввести в строй два запасных — в Симферополе и на Дальнем Востоке, в Хороле, близ Уссурийска.
В первых испытательных полетах и шаттлы, и «Буран» снабжались катапультными креслами. Однако при регулярных полетах такое решение оказалось неприемлемым, поскольку семь астронавтов в шаттле и до 10 космонавтов в «Буране» размещались на двух палубах и покинуть кабину в считаные мгновения для них было нереально.
Внедрение же отделяемой кабины — удовольствие, прямо сказать, весьма дорогое. Кроме того, подобное решение пытались применить на самолетах F-111, но отказались от него из-за низкой надежности. По той же причине новшество не прижилось и на бомбардировщике В-1; очень часто при спасении в отделяемой кабине экипаж получал серьезные травмы.
И все же кадры взрыва «Челленджера», запечатленные беспристрастными видеокамерами, показывают, что кабина с экипажем хоть и оторвалась от челнока, но была практически целой! Есть даже данные, что некоторые астронавты погибли не при взрыве, а при ударе о воду. Возможно, будь кабина «спасаемой», астронавты имели бы шанс выжить.
На небольших многоразовых крылатых аппаратах спасти экипаж несколько проще. Во-первых, «маленький» аппарат массой 10–20 т все же можно увести от ракеты при помощи традиционной ДУ САС. Такое решение предлагалось в российском проекте «Клипер». Немногочисленный экипаж — из 2–3 космонавтов — можно попытаться спасти с помощью катапультных кресел. Этот способ был основным в проекте французского многоразового корабля «Гермес». Наконец, можно спасти одного пилота в компактной отделяемой капсуле, как в советском проекте боевого космоплана «Спираль». Даже при аварии на орбите он мог вернуться на Землю в небольшой сфере, похожей на спускаемый аппарат «Востока».
Если катастрофа все же произошла, очень важно понять, в чем ее причина, чтобы не было ее повторения. В авиации в таких случаях большие надежды возлагают на «черные ящики» — самописцы, упрятанные в надежные футляры, способные выдержать удар о землю и сильный огонь.
И вот ныне, похоже, первые «черные ящики» добрались и до космоса. Во всяком случае, NASA совместно с некоммерческой корпорацией Aerospace доводит до ума первый в мире самописец, способный пережить катастрофу космического аппарата.
Задуматься над этой проблемой специалистов заставила катастрофа шаттла «Колумбия», произошедшая в феврале 2003 года при возвращении корабля с орбиты. Экспертам тогда удалось восстановить картину происшедшего во многом благодаря тому, что корабль был буквально напичкан датчиками.
Идеи об установке таких регистраторов в космические аппараты, естественно, возникали и раньше, однако было неясно, как защитить аппаратуру от сгорания при огромных скоростях вхождения в плотные слои атмосферы. Теперь эту проблему удалось решить благодаря новым наноматериалам повышенной прочности и жаростойкости.
Космические «черные ящики», получившие название REBR (Reentry Breakup Recorder), вполне возможно, будут установлены на пилотируемых космических кораблях CEV (Crew Exploration Vehicle), которые в 2014 году должны сменить нынешние шаттлы. А до тех пор REBR будут испытываться на беспилотных спутниках.
Сейчас эти приборы представляют собой обтекаемые куполообразные модули диаметром чуть меньше 30 см и весом около 1 кг, которые крепятся в кабине и крыльях. Как только температура по соседству с прибором превышает критическую, срабатывает механизм отстрела «ящика». Далее, во время падения на Землю, прибор передает в эфир всю накопленную информацию, устраняя таким образом даже необходимость отыскивать его в неизвестной местности.
Дата добавления: 2015-06-17; просмотров: 838;