Функция дыхания

 

В условиях покоя или при выполнении субмаксимальных нагрузок потребность организма в кислороде остается на высоте такой же, что и на равнине. Поэтому, чтобы адекватно обеспечить организм кислородом, уменьшение количества молекул О2 в единице объема разреженного воздуха на высоте должно быть компенсировано соответствующим увеличением легочной вентиляции. Это основной функциональный механизм быстрого приспособления организма к гипоксическим условиям высоты.

На высоте до 3000-3500 м легочная вентиляция в покое усиливается вначале крайне незначительно. Поэтому сразу часто наблюдается особенно большое снижение парциального давления О2 в альвеолярном воздухе. При выполнении мышечной работы на высоте легочная вентиляция с самого начала существенно больше, чем на равнине. У одного и того же человека при одинаковой абсолютной нагрузке (равном потреблении О2) легочная вентиляция тем сильнее, чем больше высота.

С одной стороны, сниженная плотность воздуха на большой высоте облегчает внешнее дыхание, с другой - при низком барометрическом давлении способность дыхательных мышц повышать внут-ригрудное давление уменьшается. В целом, однако, максимальные возможности дыхательного аппарата на высоте больше, чем на уровне моря. Во время максимальной работы на большой высоте легочная вентиляция может достигать 200 л/мин (табл. 21).

Снижение барометрического давления ведет к уменьшению парциального напряжения О2 во всех звеньях кислородтранспортной системы организма, хотя усиленная легочная вентиляция и другие физиологические механизмы препятствуют снижению содержания О2 в крови и других тканях тела.

В результате вблизи митохондрий давление О2 может быть равно 10 мм рт. ст. на уровне моря и около 5 мм рт. ст даже на высоте 5600 м. Такое давление все еще достаточно, чтобы обеспечить оптимальные условия для протекания окислительных ферментативных реакций в клетках тела.

Парциальное давление О2 в альвеолярном воздухе определяется давлением этого газа во вдыхаемом воздухе и величиной легочной вентиляции. Чем выше последняя, т. е. чем больше обменивается воздух в легких, тем ближе состав альвеолярного воздуха к атмосферному. Однако в любом случае парциальное давление О2 в альвеолярном воздухе может лишь приближаться к таковому в атмосферном (вдыхаемом) воздухе, но не быть равным ему, а тем более не превышать его. Поэтому по мере увеличения высоты (снижения барометрического давления) падает парциальное давление О2 в атмосферном и соответственно в альвеолярном воздухе (см. табл. 20).

Пропорционально падению парциального давления Ог в атмосферном и альвеолярном воздухе снижается парциальное напряжение О2 в артериальной крови (гипоксемия). Это один из важнейших стимулов усиления легочной вентиляции в условиях покоя. Гипоксемия стимулирует хе-морецепторы каротидных и аортальных телец, что рефлекторна усиливает активность дыхательного центра.

Высотная гипервентиляция вызывает усиленное выведение СО2 из крови с выдыхаемым воздухом. В результате по мере подъема на высоту напряжение СО2 в артериальной крови уменьшается, т.е. развивается гипокапния, которая может вызвать развитие мышечных спазмов и обширную вазоконстрикцию. Особенно неблагоприятны для организма последствия сужения сосудов головного мозга.

При усиленном удалении с выдыхаемым воздухом СО2 из крови содержание в ней растворенного СО2 снижается больше, чем бикарбоната. Поэтому вторичным эффектом высотной гипервентиляции является сдвиг реакции крови в щелочную сторону - повышение рН (дыхательный алкалоз). Снижение парциального напряжения СО2 и повышение рН в артериальной крови оказывает тормозящее влияние на дыхательный центр.

Уровень легочной вентиляции на высоте следует рассматривать как физиологический компромисс между требованием адекватного снабжения организма кислородом в гипоксических условиях и необходимостью поддерживать кислотно-щелочное равновесие в норме.

Падение парциального напряжения О2 в артериальной крови в условиях высотной гипоксии ведет к снижению процентного насыщения гемоглобина кислородом и, следовательно, к уменьшению содержания О2в крови. На высоте 2000-3000 м парциальное давление О2 в альвеолярном воздухе равно примерно 80-60 мм рт. ст., т. е. находится еще в пределах "плоской", верхней, части кривой диссоциации оксигемоглобина. Это гарантирует относительно высокое насыщение кислородом крови в легочных капиллярах - более 90% гемоглобина в форме оксигемоглобина. На большей высоте альвеолярное давление О2 попадает уже на "крутую", среднюю, часть кривой диссоциации оксигемоглобина. Поэтому способность связывать и транспортировать с кровью О2 на большой высоте резко снижается.

Падение насыщения артериальной крови кислородом до 80% от нормальной величины вызывает комплекс симптомов тяжелой гипоксии, известный под названием "горная болезнь": головную боль, состояние усталости, нарушение сна, пищеварения и др.

Во время мышечной работы в условиях высотной гипоксии парциальное напряжение и содержание О2 в артериальной крови снижены, а в венозной крови примерно такие же, что и в обычных условиях. Поэтому системная артериовенозная разность по кислороду при выполнении одинаковой работы в горных условиях меньше, чем в равнинных (см. табл. 21).

Таблица 21.

Показатели кислородтранспортной системы при максимальной аэробной работе у тренированных мужчин на уровне моря и через 2 недели пребывания на высоте

Показатели Уровень моря (до 500 м) Высота
2300 м 4000 м
Барометрическое давление (мм. рт. ст.)
Парциальное давление О2 (мм. рт. ст.):      
во вдыхаемом воздухе
в альвеолярном воздухе
в артериальной крови
разность между альвеолярным воздухом и артериальной кровью
Внешнее дыхание:      
легочная вентиляция (л/мин, ВТР5)
вентиляционный эквивалент
диффузионная способность легких для О2 (л/мин/мм рт. ст., 5ТРО)
индекс дыхательного обмена (VСО2/VО2) 1,20 1,22 1,30
Кровь: объем циркулирующей крови (л) 6,42 6,19 5,77
объем циркулирующей плазмы (л) 3,16 2,95 2,55
объем циркулирующих эритроцитов (л) 3,26 3,24 3,22
содержание О2 в артериальной крови (об.%) 18,5 16,8 13,5
содержание О2 в смешанной венозной крови (об.%) 1,8 1,8 1,8
артериовенозная разность О2 (об.%)
рН артериальной крови 7,30 7,25 7,20
напряжение СО2 в артериальной крови (мм рт. ст.)
бикарбонат плазмы (мМ/л) 9,7 7,2 5,8
лактат (мМ/л) 11,0 11,0 11,0
Кровообращение:      
макс, сердечный выброс (л/мин) 30,0 30,0 30,0
макс. ЧСС (уд/мин)
макс, систолический объем (мл)
макс, кислородный пульс (млО2/уд)
МПК (л/мин) 4,81 3,60 1,51

 

Чем больше высота (сильнее степень гипоксии) и чем интенсивнее нагрузка, тем значительнее падение напряжения и насыщения О2 в артериальной крови.

При выполнении мышечной работы на высоте увеличение концентрации молочной кислоты в мышцах и крови происходит при более низких нагрузках, чем на уровне моря (снижение анаэробного порога). При одной и той же нагрузке концентрация молочной кислоты в мышцах и крови при работе на высоте больше, а рН крови ниже, чем на уровне моря. Повышенная на высоте лактацидемия при выполнении субмаксимальных аэробных нагрузок служит дополнительным стимулом для усиления легочной вентиляции.

Максимальная концентрация лактата в крови при работе в первые дни на высоте такая же, что и на уровне моря. Следовательно, максимальная анаэробная мощность, по крайней мере та ее часть, которая определяется лактацидной (гликолити-ческой) системой, на высоте не снижается. Об этом также свидетельствует тот факт, что максимальный кислородный долг в первые дни на высоте такой же, что и на уровне моря.








Дата добавления: 2015-05-16; просмотров: 763;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.