Консервативные силы. Силы, работа которых не зависит от пути, по которому двигалась частица, а зависит лишь от начального и конечного положений частицы

 

Силы, работа которых не зависит от пути, по которому двигалась частица, а зависит лишь от начального и конечного положений частицы, называются консервативными.

Легко показать, что работа сил на любом замкнутом пути равна нулю. Разобьем произвольный замкнутый путь (рис.1) точками 1 и 2 (взятыми также произвольно) на два участка, обозначенных римскими цифрами I и II. Работа на замкнутом пути слагается из работ, совершаемых на этих участках:

 

(8)

 

Рис.1

 

Изменение направления движения по участку II на обратное сопровождается заменой всех элементарных перемещений ds на - ds, вследствие чего изменяет знак на обратный. Отсюда заключаем, что . Произведя замену в (8), получим, что

 

 

Вследствие независимости работы от пути последнее выражение равно нулю. Таким образом, консервативные силы можно определить как силы, работа которых на любом замкнутом пути равна нулю.








Дата добавления: 2015-05-16; просмотров: 562;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.