От топ‑кварка до пентакварка
Пока…
Ведь за минувшее десятилетие, например, получили объяснение некоторые физические феномены, которые долго представлялись загадочными.
Так, в начале 1990‑х годов физики‑экспериментаторы безуспешно пытались обнаружить топ‑кварк – последнюю элементарную частицу, которая была предсказана Стандартной моделью мироздания и существование которой к тому времени не удавалось доказать.
Кварки – точечные частицы, скрывающиеся внутри протонов и нейтронов, – вызывают особый интерес у ученых. За их исследование вручено уже несколько Нобелевских премий, начиная с 1969 года, когда лауреатом этой премии стал американский физик Марри Гелл‑Ман – человек, предположивший, что подобные частицы существуют.
Американский физик Марри Гелл‑Ман предположил, что протоны и нейтроны состоят из миниатюрных частиц – кварков
Сорок лет назад, постулируя существование кварков, ученые, скорее, изобретали удобную теоретическую конструкцию, позволявшую, наконец, навести порядок в хаосе элементарных частиц, которых год от года становилось все больше. В начале шестидесятых годов число «кирпичиков мироздания» превысило две сотни, что и побудило некоторых физиков предположить, что эти частицы, в свою очередь, состоят из каких‑то более мелких, воистину элементарных частиц. Природа не терпит лишней сложности.
Несколько лет гипотеза кварков не подтверждалась на практике. Лишь в 1968 году в США, в Стэнфордской лаборатории, при обстреле электронами неподвижных протонов, удалось показать, что разброс частиц не соответствует прежним представлениям о протоне как однородном объекте, не имеющем никакой внутренней структуры. Наоборот, картина разброса явно свидетельствовала, что внутри протона находятся какие‑то другие частички. Это и были кварки.
В последующие годы ученые обнаружили пять разновидностей кварков и лишь топ‑кварки скрывались от их внимания. Все сообщения об их открытии были ошибочны.
Так, весной 1994 года на пресс‑конференции, организованной сотрудниками Национальной лаборатории имени Э. Ферми в Чикаго, было объявлено, что «топ‑кварк – последний, недостающий кирпичик материи – открыт». Эксперимент проводился на «Теватроне» – в то время самом мощном в мире ускорителе элементарных частиц. Длина его кольца составляет 6,3 километра.
Впрочем, руководитель «Теватрона» признал, что обнаружить сам топ‑кварк не удалось. «Мы располагаем лишь косвенными свидетельствами того, что он существует». Потребовались дальнейшие эксперименты, чтобы развеять сомнения. Лишь год спустя, в марте 1995 года, из Чикаго пришло сообщение, что во время нового эксперимента на «Теватроне» там все‑таки обнаружен топ‑кварк.
Масса топ‑кварка составила 174 гигаэлектронвольт (миллиардов электронвольт). Он почти вдвое тяжелее ближайшей элементарной частицы – Z‑бозона. Почему масса топ‑кварка так велика? Стандартная модель не может этого объяснить.
Итак, стали известны шесть разновидностей кварков, получивших название Up («верхний»), Down («нижний»), Strange («странный»), Charm («очарованный»), Bottom («красивый») и Тор («истинный»), а также шесть соответствующих антикварков. «Верхний» и «нижний» кварки – самые легкие; они входят в состав ядер атомов обычного вещества. Более массивные кварки возникали на ранней стадии существования Вселенной, а сегодня их получают во время экспериментов, проводимых на ускорителях.
Различные комбинации кварков позволяют описать все частицы, участвующие в сильных взаимодействиях. С ними много неясного – так, до сих пор не удалось хотя бы отделить один кварк от другого. Они не разъединяются, какую бы огромную энергию мы ни прилагали, потому что сила их взаимного притяжения неимоверно увеличивается по мере того, как растет расстояние между ними. Кварки неизменно образуют тройственные союзы, порождая барионы – протоны и нейтроны, – или двойственные союзы, порождая мезоны: пионы и каоны.
На гамбургском ускорителе HERA готовятся к проведению очередного эксперимента
По словам помощника директора Объединенного института ядерных исследований Павла Боголюбова, «если кварки попытаться растащить в стороны, то при этом выделится энергия, на несколько порядков превосходящая ядерную». Энергия пары кварков при попытке ее разъять возрастает настолько, что когда‑нибудь достигнет величины, при которой произойдет превращение энергии в массу. Из пустоты возникнет пара «кварк‑антикварк». Было два кварка, станет четыре. Вместо одной пары – две пары. Можно заново попытаться разделить кварки – не выйдет. «Кварки находятся в тюрьме, – шутят физики, – убежать из которой никогда не удастся».
По современным научным представлениям, кварки существовали отдельно друг от друга лишь на самой ранней стадии развития Вселенной, когда ее плотность и температура были невероятно велики. В принципе, в лаборатории можно воспроизвести подобные условия. Это, например, на доли мгновения удалось в 2003 году сотрудникам Брукхэйвенской национальной лаборатории (США).
Да, кварки остаются крайне загадочными частицами. Их исследование принесет еще много' неожиданностей. Даже внутренняя структура протона теперь не представляется такой уж простой, как прежде. Внутри протона, как говорят физики, «бурлящее месиво из кварков, антикварков и глюонов, которые непрестанно возникают из ничего и через крохотные доли секунды вновь исчезают. Кварки беспрерывно обмениваются глюонами, и это так называемое сильное взаимодействие скрепляет атомные ядра, не дает им распасться. Чем пристальнее мы вглядываемся в протон, тем больше частиц мы там обнаруживаем!» Так что о протоне можно сказать, что он состоит из трех стабильных кварков, если только… игнорировать эти частицы, исчезающие почти мгновенно.
* * *
Лет тридцать назад физики предположили, что могли бы существовать частицы, состоящие даже из четырех или пяти кварков. Подобная идея не противоречит Стандартной модели мироздания. Лишь в 1997 году российские физики Дмитрий Дьяконов, Виктор Петров и Максим Пляков сумели рассчитать, как должна выглядеть система из пяти кварков.
А уже в начале нашего века – новый шаг вперед. В 2003 году сразу несколько групп ученых, в том числе сотрудники российского Института теоретической и экспериментальной физики, обнаружили пентакварки – особые частицы, состоящие из пяти кварков.
Первыми эту частицу получили японские исследователи, пусть она и просуществовала всего 10‑20 (десять в минус двадцатой степени) секунды. Во время эксперимента в исследовательском центре под Осакой Такаси Накано и его коллеги бомбардировали энергетичными гамма‑лучами твердый углеродный блок. При столкновении кванта гамма‑лучей с нейтроном углеродного ядра появлялся заряженный К‑мезон, но нейтрон при этом сохранялся. Последующий анализ продуктов реакции показал, что нейтрон сливался с положительно заряженным К‑мезоном, причем на мгновение возникала частица, содержавшая пять кварков. Она состояла из двух Down‑, двух Up‑ и одного aнтиStrange‑кваркаa. Ее масса равнялась 1,54гигаэлектронвольт, что соответствовало теоретическим предсказаниям.
Подтвердилось открытие сразу. Американский исследователь Кен Хикс и его коллеги, бомбардируя гамма‑лучами ядра дейтерия, также обнаружили следы пентакварка. После двухмесячных расчетов ученые пришли к выводу, что в общей сложности в проведенном опыте нейтроны 50 раз сталкивались с К‑мезонами, образуя пентакварки. Масса необычной частицы, по Хиксу, составила 1,543 гигаэлектронвольт.
Итак, в 2003 году все сомнения в существовании пентакварка отпали. «Зоопарк» частиц пополнился новым экзотическим обитателем. Впрочем, вряд ли стоит рассчитывать на получение стабильной формы пентакварка. Найти ее можно разве что в центре черной дыры.
* * *
В 2007 году вступит в строй Large Hadron Collider (LHC) – новый коллайдер Европейского центра физики элементарных частиц, Большой адронный коллайдер. На этом гигантском кольцевом ускорителе протяженностью 27 километров протоны будут сталкиваться с антипротонами, разогнавшись почти до световой скорости. В момент такого соударения высвобождается энергия порядка 14 тысяч гигаэлектронвольт и возникает состояние, наблюдавшееся через 10‑12 (десять в минус двенадцатой степени) секунды после Большого Взрыва. Ежесекундно здесь можно будет производить до миллиарда столкновений.
С вводом в эксплуатацию нового коллайдера мы заглянем вглубь материи дальше, чем когда‑либо. Очевидно, он произведет революцию в физике элементарных частиц. Возможно, предстоящие эксперименты пошатнут наши представления о фундаментальных основах мира и покажут, что кварки – вовсе не элементарные частицы и что они состоят из каких‑то более крохотных частиц, иногда называемых «прекварками». В таком случае в XXI веке повторятся те же события, что пережила физика XX века, когда обнаружилось, что якобы неделимые нейтроны и протоны состоят из еще более элементарных частиц – кварков. Дробление материи на составные части продолжится. Может быть, «в материи, как в русской матрешке, – пишет обозреватель немецкого журнала «Bild der Wissenschaft», – мы будем находить все более миниатюрные “куклы” – и так будет продолжаться до бесконечности?»
Пока известно, что кварки и лептоны ведут себя как точечные частицы вплоть до расстояний порядка 10‑17 (десять в минус семнадцатой степени) сантиметра. Но что лежит по ту сторону этой границы вплоть до расстояния Планка, равного 10‑13 (десять в минус тридцать третьей степени) сантиметра? Физики называют эту область Микрокосма «Великой пустыней». Но разве может там простираться «пустыня», если вспомнить, как изобилуют элементарными частицами все остальные области Природы?
Превращения «призрачных частиц»
На рубеже нового века благополучно разрешилась и загадка солнечных нейтрино. Ученые долго не могли понять, почему на Земле регистрируют значительно меньше нейтрино, нежели предсказывала расчетная модель.
Еще в 1920 – 1930‑е годы физики и астрономы предложили модель термоядерной реакции превращения водорода в гелий, протекающей внутри Солнца; из этой реакции наше светило черпает энергию. Расчеты, проделанные в шестидесятые годы, показали, что около двух процентов энергии уносят нейтрино. Покинув Солнце, эти «призрачные частицы» – их называют так потому, что они почти не взаимодействуют с другими частицами, – устремляются в космическое пространство. Миллиарды нейтрино в любое мгновение пролетают сквозь наши тела, но мы их не замечаем. По расчетам астрофизиков, каждый квадратный сантиметр земной поверхности ежесекундно пронизывают 5 миллионов подобных частиц. Нейтрино – самая распространенная частица на нашей планете и… самая неприметная.
В то же время экспериментальные данные свидетельствовали, что до Земли долетает почти вдвое меньше нейтрино, чем следовало из расчетов. Например, это показал российско‑американский эксперимент SAGE, проведенный в 1992 году в Баксанской лаборатории на Кавказе.
Значит, либо неверна была модель процессов, протекавших в недрах Солнца, либо природа нейтрино была иной, например, у них могла быть совсем крохотная масса – в Стандартной модели она равнялась нулю.
Японские ученые ведут поиск нейтрино
В апреле 1996 года начались эксперименты на японском детекторе «Суперкамиоканде», содержавшем 50 миллионов литров сверхчистой воды. При столкновении нейтрино с атомами воды появлялись электроны, а, кроме того, наблюдались микровспышки. Их‑то и можно было уловить с помощью фотоэлектронных умножителей, расставленных вокруг. Уже в первые месяцы работы эта установка зарегистрировала больше нейтрино, чем все остальные приборы за 25 лет наблюдений, и именное ее помощью в 1998 году была решена загадка дефицита нейтрино. У этой частицы, действительно, обнаружилась масса. Стало ясно, что на Солнце образуется «нужное» количество нейтрино, но приборы, очевидно, не могут заметить все их.
С помощью подобных детекторов улавливают солнечные нейтрино
Теперь известно, что существуют три типа нейтрино: электронное, мюонное и тау‑нейтрино. У них есть небольшая масса, поэтому они могут превращаться в нейтрино другого типа. В недрах Солнца образуются только электронные нейтрино. В экспериментах, проводившихся с начала 1960‑х годов, ученые пытались регистрировать лишь нейтрино этого типа, но их неизменно оказывалось меньше, чем следовало из расчетов, ведь на пути к Земле они превращались в нейтрино другого типа. Эти превращения, называемые на научном языке «осцилляциями», приводят к тому, что на Земле обнаруживают меньше нейтрино, чем считалось. Большинство детекторов не могут одновременно регистрировать нейтрино всех трех типов, поэтому часть из них ускользает от наблюдения. «Нейтрино маскируются, – шутят ученые, – у них есть шапка‑невидимка».
В 2002 году эксперимент, проведенный в Садберийской нейтринной обсерватории, расположенной глубоко под землей близ города Садбери в канадской провинции Онтарио, окончательно подтвердил описанные выше свойства нейтрино. Таким образом, модель строения Солнца верна, зато нейтрино выглядят иначе, чем представляли ученые.
Точное значение массы нейтрино еще предстоит определить. Пока удалось установить лишь разность масс электронного и других видов нейтрино. Она составляет примерно одну пятидесятимиллионную долю массы электрона. Вообще же, по оценкам физиков, масса электронного нейтрино не должна превышать 2,2 электрон‑вольт.
Мы не знаем также, какова доля нейтрино в общей массе мироздания. Предположительно, это значение очень мало. Возможно, что существуют и неизвестные нам, более тяжелые разновидности нейтрино.
В Антарктиде, в толще льда, сооружается нейтринный телескоп «Аманда»
В XXI веке исследование нейтрино – этих загадочных частиц, прилетающих из Космоса, – поможет понять происхождение Вселенной и ее судьбу. Нейтрино возникают во время ядерных реакций, протекающих в недрах звезд. Именно эти частицы позволили заглянуть внутрь Солнца; они сообщают о взрывах сверхновых звезд и поведении черных дыр. С их помощью мы всматриваемся в те уголки Вселенной, куда не проникает свет. Возможно, именно исследование нейтрино поможет понять природу темной материи и суть загадочных гамма‑вспышек.
Новый нейтринный телескоп – «Аманда» – сооружается сейчас в Антарктиде, на станции Амундсена‑Скотта, то есть на Южном полюсе планеты. В Антарктиде идеальные условия для его строительства. Самый большой в мире нейтринный телескоп будет состоять примерно из пяти тысяч детекторов, погруженных в лед на глубину более двух километров. Его сооружение завершится в 2010 году. Ледяной панцирь, окружающий прибор, защитит его от помех – от постороннего излучения. Нацелен телескоп не в небо, а на огромный ледяной куб объемом один кубический километр, то есть он будет регистрировать нейтрино, прилетевшие… со стороны Северного полюса и беспрепятственно миновавшие толщу Земли в отличие от других частиц. Проникая в ледяной куб, нейтрино может столкнуться с каким‑нибудь протоном. Так возникает другая элементарная частица – мюон. Ее энергия очень высока, поэтому при движении мюона сквозь толщу льда наблюдается слабое свечение – излучение Черенкова‑Вавилова. Его и стремятся обнаружить охотники за нейтрино. Свечение мюона хорошо видно в толще льда; за ним можно следить с расстояния в сотни метров.
«За первыми открытиями следует период кропотливых планомерных исследований, – резюмировал журналист Александр Семенов, выступая на страницах журнала «Знание – сила». – Похоже, что самая неуловимая частичка хранит ключи от многих тайн природы и наступивший век может стать веком нейтринной астрономии».
Дата добавления: 2015-05-08; просмотров: 1089;