Вирус гриппа и его помощник

 

Снова пришла зима, и снова пришел грипп. На сей раз не птичий, а для разнообразия свиной. Что это за напасть такая – почему грипп, вроде бы предназначенный для кур или свиней, способен вторгаться в дыхательные пути человека? Что говорит по этому поводу наука?

Наука по этому поводу говорит, что вторжение вируса гриппа в наш организм представляет собой совершенно замечательный по изяществу и тонкости процесс своеобразного молекулярного танца, исполняемого, как и положено танцу, двумя партнерами – некой молекулой, находящейся на поверхности клетки, и некой другой молекулой, находящейся на поверхности вируса гриппа. И далее наука говорит, что именно изысканно‑согласованные пируэты этих двух молекул как раз и открывают разным вирусам путь в наши дыхательные пути. Присмотримся же и мы к этой «научной картине гриппа» – авось тогда и для нас кое‑какие загадки гриппа перестанут быть загадками.

Прежде всего – что знает наука об этих танцевальных партнерах? Начнем с вируса. Всякий вирус, говорят ученые, состоит из генетической молекулы и оболочки, в которой эта молекула упакована. У вируса гриппа эта генетическая молекула принадлежит к классу РНК, которая имеет некоторые химические отличия от всем известной ДНК, и, в частности, состоит из одной длинной цепи, а не из двух, как ДНК. Однако у вируса гриппа (как, впрочем, и у многих других вирусов) эта РНК «сегментирована», то есть ее длинная цепь разбита на несколько отдельных кусков. Это позволяет вирусу очень быстро эволюционировать. Действительно, если два разных вида такого вируса встретятся в одном месте, то каждый сможет передать часть сегментов своей РНК другому. Благодаря такой «пересортировке» (или «виральному сексу», как ее иногда называют) потомство этих двух вирусов получит новые гены, а с ними – новые свойства. Но для этого они должны прежде всего произвести такое потомство. А вирус, как известно, – не живое существо: у него нет тех органелл, с помощью которых живет и размножается всякая обычная клетка. Поэтому вирусу для размножения нужно пробраться в обычную клетку – там он сможет воспользоваться всеми ее органеллами.

Как же он туда пробирается? С этого вопроса мы начали и к нему вернулись. Как уже сказано выше, ученые обнаружили, что проникнуть в клетку вирусу помогают специальные молекулы, торчащие на его оболочке. Увеличенный под электронным микроскопом, вирус выглядит как шарик, утыканный «гвоздиками» и «грибками». Они торчат в жировой оболочке вируса таким образом, что основная их часть находится снаружи, а «хвосты» входят внутрь оболочки. «Гвоздики» – это молекулы особого сахаро‑белка, который называется хем‑агглютинин, или сокращенно Н (не русское «эн», а английское «эйч»!). Такое название молекула Н получила за свою способность «агглютинировать», то есть склеивать друг с другом красные кровяные тельца‑эритроциты, несущие в себе железистые «хем‑группы» гемоглобина. Изучая вирусы гриппа класса А (самого вирулентного из трех классов гриппозных вирусов), исследователи обнаружили (на момент написания этого текста) 16 разных видов молекул Н, в основном – из вирусов диких птиц (например, вид Н16 был открыт в 2006 году на оболочке вируса гриппа диких гусей, обитающих в Швеции и Норвегии).

Второй тип молекул, торчащих на оболочке вируса, то, что мы назвали «грибочки», – это нейраминидаза (сокращенно N). Это тоже соединение одного из видов сахара с одним из видов белков: длинная цепочка сахара играет роль ножки, а белковая цепочка свернута в плоскую «шапочку» гриба, над которой поднимаются еще несколько сахарных цепочек. В вирусах разных птиц и животных найдено девять разных видов нейраминидазы, от N1 до N9. Подобно хем‑агглютинину нейраминидаза тоже образуется по инструкциям вирусной РНК. В целом эта РНК у вируса гриппа содержит 11 разных генов: один – для Н, один для N, а девять остальных – для девяти видов белков, находящихся вместе с РНК внутри вирусной оболочки (они помогают вирусу в деле его размножения и образования потомства внутри клетки‑хозяина). В вирусах гриппа А эти 11 генов разбросаны по восьми сегментам. И поскольку эти сегменты в процессе размножения, как мы уже знаем, проходят «пересортировку», то гены разных Н и разных N на оболочке вируса‑потомка могут соединяться в самых разных комбинациях. И это крайне важно для существования вирусов.

Это крайне важно потому, что в отличие от упомянутых девяти белков, которые помогают вирусу внутри клетки, молекулы Н и N помогают ему снаружи – в тот момент, когда вирусу нужно проникнуть в клетку, и потом, когда его потомкам нужно выйти из нее. А для проникновения в клетку и выхода из нее вирус как раз и пользуется той или иной комбинацией этих двух молекул, как мы – кодом домофона. Например, вирус, преимущественно атакующий клетки свиньи, несет на своей оболочке «код» H1N1, а вирус, особенно охотно вторгающийся в клетки птицы, – H5N1. Поэтому в организме свиньи, заболевшей гриппом, исследователи, как правило, обнаруживают вирус типа H1N1, а в организме курицы – H5N1. И соответственно называют их вирусом «птичьего» или вирусом «свиного» гриппа. Но такая избирательность не абсолютна. Вирусы, несущие на себе другие коды, тоже зачастую могут проникать в эти клетки. И, встречаясь там друг с другом, могут, как описано выше, обмениваться сегментами своих РНК, что приводит к появлению новых видов гриппозных вирусов (это особенно часто происходит в клетках свиней, которые в этом смысле являются своеобразными «плавильными котлами» природы).

Справедливо это и для людей: в клетки дыхательного тракта человека могут проникать не только вирусы гриппа, специализирующиеся на ежесезонном вторжении в них, но и такие вирусы, которые несут на себе H‑N «коды» птиц или животных. Вот, для иллюстрации, список «кодов», обнаруженных в гриппозных вирусах во время последних эпидемий или вспышек гриппа у людей: H1N1 (знаменитая «испанка» 1918 года – 500 миллионов заболевших, 50 миллионов погибших, а также эпидемия свиного гриппа 2009 года); H2N2 (эпидемия «азиатского» гриппа 1957 года – 1 миллион погибших), H3N2 («гонконгский» грипп 1968 года – 500 тысяч погибших, а также вспышка 2007 года); H5N1 («птичий» грипп 2004 года), а кроме того, H7N7, H1N2, H9N2, H7N2, H7N3 и H10N7.

Мы, однако, все еще не ответили на вопрос, что именно делает возможным такое проникновение в наши клетки всех этих «инородных» вирусов. Как показали исследования, всем этим вирусам «открывает дверь» некий единый «тайный помощник». Он находится на поверхности клеток дыхательных путей и является тем вторым партнером упомянутого выше «молекулярного танца», который завершается проникновением вируса в клетку. Но он имеет не одну, а две ипостаси и потому способен помогать разным вирусам, не только «нашим» человеческим, но и «инородным». Помощник этот называется «сиаловая кислота».

Последуем за вирусом внутрь нашего дыхательного тракта. Всякий вирус, попадая внутрь организма, «видит» перед собой множество самых разных клеток. В этом «лесу» он должен найти нужные ему «деревья» – те клетки, в которых он способен размножаться (вирусы, как правило, специализируются не только на организмах определенного вида, но и на тканях определенного типа). Это нелегко, потому что каждая из окружающих вирус клеток покрыта, как шубой, густой порослью защитных молекул сахаро‑белков и сахаро‑жиров. Жиры образуют оболочку клетки, белки заякорены в ней, а из тех и других торчат вверх, как ворсинки, длинные цепочки сахарных молекул. Вся эта «шуба» называется «гликокаликс». Она не только защищает клетку – она еще и помогает ей соединяться с соседними клетками, образуя ткань, она позволяет этим клеткам общаться друг с другом, а также с иммунными клетками, и, наконец, она наделяет организм способностью отличать свои клетки от инородных «интервентов» вроде того же вируса – поскольку все клетки одного организма имеют уникальный гликокаликс (только у идентичных близнецов он одинаков), то на этом фоне «чужак» немедленно заметен. Так что наш вирус должен поторопиться и побыстрее проникнуть в какую‑нибудь клетку, в противном случае против него будут вскоре «приняты меры» – брошены в атаку клетки иммунной системы.

Но как же найти подходящее укрытие?

Вот тут‑то на сцене и появляется «тайный помощник». Как выяснили ученые, над «шубой» подходящих вирусу клеток всегда вьется некий опознавательный вымпел, как бы сигнализируя ему: «Сюда!» Этим «вымпелом» является кончик одной специфической сахарной цепочки, входящей в состав гликокаликса. Дело в том, что все сахарные цепочки несут на верхнем конце некие группы атомов, которые химически являются кислотами. На разных клетках эти кончики разные. На тех клетках, в которых только и способен размножаться вирус гриппа, есть сахарные цепочки, так называемые «галактозы», которые кончаются упомянутой выше сиаловой кислотой. Вот она‑то и сигнализирует вирусу, в какие клетки он должен проникнуть. Но этим ее роль не исчерпывается. Вслед за этим сиаловая кислота еще и помогает вирусу проникнуть в указанные клетки. Тут‑то и начинается их «танго для двоих».

Первое «па» этого танца состоит в том, что молекула Н на оболочке вируса сближается с сиаловой кислотой. Это служит химическим сигналом, в ответ на который клетка в месте соприкосновения образует углубление, этакую полусферу, охватывающую вирус. Следующий пируэт «танца» начинается с того, что в образовавшееся углубление входят из клетки ионы водорода. «Почуяв» их, молекула Н преобразуется: ее белковая часть сворачивается, как пружина, и тем самым подтягивает вирус вплотную к мембране клетки, а затем «склеивает» оболочку вируса с этой мембраной. Следующее «па»: углубление, в котором все это происходит, закрывается снаружи, образуя полную сферу – этакий микроскопический пузырек, внутри которого находится вирус. На последнем этапе ионы водорода входят внутрь вируса и вызывают химическую реакцию, в результате которой вирусная РНК вместе со своими белками освобождается от оболочки, после чего один из белков перерезает «пуповину» – молекулу Н, которая держала оболочку приклеенной к мембране клетки. Оболочка отпадает, и внутри пузырька остается только вирусная РНК с ее белками. Затем пузырек втягивается в клетку, и вирус начинает там свое размножение.

Танец закончен, болезнь началась. Теперь вирус начнет размножаться, и его потомки, выходя из клетки, разрушат ее, а потом вторгнутся в другие такие же клетки и, в свою очередь, разрушат и их тоже. Остается лишь добавить, что при выходе вирусов‑потомков из клетки примерно тот же процесс повторится в обратном порядке: новые вирусы выйдут наружу внутри пузырьков, приклеенных к клеточной мембране цепочками тех же галактоз с присоединенными к ним сиаловыми кончиками, с которыми раньше вступала в «танец» молекула Н. Но теперь в танец с ними вступит молекула N, нейраминидаза, причем в «танец» обратный – она разорвет связь сиаловых кислот с новорожденными вирусами и тем самым отделит эти вирусы от клеточной мембраны, что даст им возможность устремиться на поиски новых клеток для своего размножения.

А теперь разъясним, что это за две ипостаси сиаловой кислоты, о которых мы упомянули выше. Как уже говорилось, сиаловая кислота вьется, как вымпел, на конце молекулы галактозы, и вот исследования показали, что она способна прикрепляться к этой галактозе двумя способами, которые химики условно обозначают «альфа 2–3» и «альфа 2–6». И те же исследования показали, что с каждым из этих «посадочных мест» – они называются «рецепторы» – связывается свой вид вирусов: рецептор «альфа 2–3» имеет вид, который соответствует молекулам хем‑агглютинина и нейраминидазы на оболочке вируса птичьего гриппа (H5N1), тогда как рецептор «альфа 2–6» соответствует вирусу человеческого гриппа (H1N1). А поскольку к клетках дыхательного тракта человека представлены и те, и другие «альфы», то становится понятно, почему вирус птичьего гриппа может заражать не только птиц, но и людей. Во всем виновата сиаловая кислота с двумя ее вариантами соединения с галактозой.

Однако загадки нашего гриппа на этом не кончаются. Хотя оба вируса проникают в организм одним и тем же путем, с помощью сиаловой кислоты, но тяжесть заболеваний при этом оказывается разной: птичий грипп более суров и вызывает больше смертных случаев. В чем же дело? В 2006 году эту загадку атаковали сразу две группы исследователей, и в результате выяснилось, что рецепторы «альфа 2–3» и «альфа 2–6» находятся в разных местах дыхательного тракта. «Вымпел» «альфа 2–6» развевается преимущественно над клетками носоглотки и бронхов; глубже, в самих легких, таких клеток становится все меньше (хотя они есть и там). Напротив, «вымпелов» «альфа 2–3», приманивающих вирус птичьего гриппа, особенно много именно внутри легких, в тех альвеолярных клетках, где, собственно, и происходит газообмен. Эти клетки секретируют особый белок, который не дает легким «спадать», и возможно, что этот же белок помогает вирусу размножаться. А поскольку эти клетки находятся в основном внутри легких, то последствия их разрушения вирусом оказываются более тяжелыми. Как бы то ни было, но при вскрытии умерших от гриппа больных вирусы птичьего гриппа обнаруживаются именно в разрушенных альвеолярных клетках.

Любопытно, что у самих птиц рецептор «альфа 2–3» находится в основном на клетках кишечника – и не случайно грипп у птиц чаще всего протекает как кишечное заболевание. И это, кстати (или некстати?) сразу напоминает нам о вирусе свиного гриппа, с которого мы начали эту заметку, – а что с ним? Каковы его особенности? И почему он тоже проникает в клетки нашего дыхательного тракта?

Вирус свиного гриппа был впервые выделен еще в 1930 году. Позже было показано, что он одинаков во всех случаях свиного гриппа по всему земному шару. Он повсюду вызывает заболевание, симптомы которого очень похожи на человеческий грипп: чихание, выделения из носа, «лающий» кашель, повышенная температура, вялость и пониженный аппетит (кстати, у собак и лошадей симптомы гриппа такие же, хотя «коды» их вирусов несколько иные, тогда как так называемый «кошачий грипп» вообще не связан с вирусом гриппа). Тогда же, в 1930 году, было обнаружено, что люди, часто контактирующие со свиньями, иногда заражаются вирусом свиного группа. И наоборот – больные люди могут заразить свиней вирусом человеческого гриппа (человеческий H1N1 или H2N3).

Однако такие случаи оставались локальными вплоть до 2009 года, когда в Мексике появилась новая разновидность вируса свиного гриппа. Хотя кодом этого вируса был уже известный человеку H1N1, но его РНК, как показали исследования, содержала один сегмент, пришедший от РНК вируса человека, два сегмента – пришедших от РНК птичьего вируса и целых пять – от РНК собственно свиного вируса H1N1 (человеческий и свиной H1N1 имеют небольшие различия в белковой части молекулы Н). Это был типичный продукт того обмена сегментами РНК, о котором мы уже говорили: три РНК оказались одновременно в одной и той же клетке и по‑новому пересортировали свои сегменты. И это наверняка произошло внутри клетки дыхательного тракта свиньи, ибо, как показало дальнейшее изучение, такая клетка может иметь как рецептор «альфа 2–6», так и рецептор «альфа 2–3», то есть в них могут проникать и человеческие, и птичьи вирусы (у птиц почти нет клеток с рецепторами «альфа 2–6», так что в их клетках такой «виральный секс», или по‑научному «антигенный сдвиг», произойти не мог).

Вот так мексиканская свинья случайно оказалась тем «плавильным котлом», в котором путем пересортировки трех вирусных РНК сформировался новый вирус, вызвавший затем пандемию 2009 года. Для нас он просто «вирус свиного гриппа», а его точное научное название: «Новый H1N1 вирус класса А свиного гриппа». Благодаря наличию в его РНК сразу трех видов генетических сегментов он способен соединяться и с рецепторами «альфа 2–6», и с рецепторами «альфа 2–3», что делает вызываемый им грипп много опаснее, чем человеческий или птичий грипп по отдельности.

 








Дата добавления: 2015-05-08; просмотров: 1082;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.