История искусственного интеллекта
Идея механического существа захватывает воображение; она давно поселилась в умах изобретателей, инженеров, математиков и мечтателей. От Железного Дровосека из Волшебной страны до роботов-детей из «Искусственного интеллекта» Спилберга и роботов-убийц из «Терминатора» — всюду машины, способные действовать и думать, как люди.
В греческой мифологии бог Вулкан ковал из золота механических прислужниц и делал трехногие столики, способные передвигаться сами по себе. Еще в 400 г. до н. э. греческий математик Архит Тарентский писал о том, что можно было бы сделать механическую птицу, которая двигалась бы за счет силы пара.
В I в. Герон Александрийский (ему приписывают изобретение первой паровой машины) делал автоматы, причем один из них по легенде способен был разговаривать. Девятьсот лет назад Аль-Джазари придумывал и конструировал такие автоматические устройства, как водяные часы, всевозможные кухонные приспособления и музыкальные инструменты,, движимые силой воды,
В 1495 г. великий итальянский художник и ученый Возрождения Леонардо да Винчи нарисовал схему механического рыцаря, который мог сидеть, двигать руками, головой и открывать и закрывать челюсть. Историки считают схему да Винчи первым реалистичным проектом человекоподобной машины.
Первого действующего, хотя и грубого робота построил в 1738 г. Жак де Вокансон; он сделал андроида, который мог играть на флейте, и механическую утку.
Слово «робот» придумал в 1920 г. чешский драматург Карел Чапек в пьесе «R.U.R.» (слово «робот» по-чешски означает «тяжелая нудная работа», а по-словацки — просто «труд»). В пьесе фигурирует предприятие под названием «Универсальные роботы Россума», серийно выпускающие роботов для неквалифицированного труда. (Однако в отличие от обычных машин эти роботы сделаны из плоти и крови.) Постепенно мировая экономика попадает в полную зависимость от роботов. Но обращаются с ними ужасно, и в конце концов роботы восстают и расправляются с хозяевами-людьми. Однако в ярости они убивают всех ученых, способных ремонтировать роботов и создавать новых, и тем самым обрекают себя на вымирание. В финале пьесы два робота особой модели обнаруживают в себе способность к самовоспроизводству и становятся новыми Адамом и Евой эры роботов.
Кроме того, в 1927 г. роботы стали героями одного из первых и самых дорогих немых фильмов всех времен — фильма «Метрополис», снятого в Германии режиссером Фрицем Лангом. Действие фильма происходит в 2026 г.; рабочий класс обречен на бесконечный труд на жутких и грязных подземных заводах, а правящая элита развлекается на поверхности. Одной красивой женщине по имени Мария удается завоевать доверие рабочих, но правители боятся, что когда-нибудь она может поднять народ на бунт, а потому обращаются к злодею-ученому с просьбой изготовить механическую копию Марии. Этот план, однако, оборачивается против авторов — робот поднимает рабочих на восстание против правящей элиты и вызывает тем самым крах системы.
Искусственный интеллект, или ИИ, существенно отличается от технологий, которые мы обсуждали до сих пор. Дело в том, что мы до сих пор слабо понимаем лежащие в основе этого явления фундаментальные законы. Физики неплохо понимают ньютонову механику, максвеллову теорию света, релятивизм и квантовую теорию строения атомов и молекул — но базовые законы разума до сих пор скрыты покровом тайны. Вероятно, Ньютон искусственного интеллекта еще не родился.
Но математиков и компьютерщиков это не смущает. Для них встретить на пороге лаборатории выходящую из нее думающую машину — только вопрос времени.
Мы можем назвать самую на данный момент влиятельную личность в области ИИ. Это великий британский математик Алан Тьюринг — провидец, сумевший заложить краеугольный камень в исследование этой проблемы.
Именно с Тьюринга начинается компьютерная революция. Он создал в своем воображении машину (которую с тех пор называют машиной Тьюринга), состоящую всего из трех элементов: вход, выход и центральный процессор (что-то вроде процессора Pentium), способный выполнять строго заданный набор операций. На базе этого представления Тьюринг установил законы работы вычислительных машин, а также точно определил их ожидаемую мощность и пределы их возможностей. И сегодня все цифровые компьютеры подчиняются жестким законам Тьюринга. Структура и устройство всего цифрового мира многим обязаны этому ученому.
Кроме того, Тьюринг внес большой вклад в основание математической логики. В 1931 г. венский математик Курт Гёдель произвел в мире математики настоящую сенсацию; он доказал, что в арифметике существуют истинные утверждения, которые невозможно доказать средствами одной только арифметики. (В качестве примера можно назвать гипотезу Гольдбаха, высказанную в 1742 г. и состоящую в том, что любое четное целое число больше двух можно записать в виде суммы двух простых чисел; гипотеза не доказана до сих пор, хотя прошло два с половиной столетия, и может оказаться вообще недоказуемой.) Откровение Гёделя вдребезги разбило мечту, продержавшуюся две тысячи лет и берущую начало еще от греков, — мечту доказать когда-нибудь все истинные утверждения в математике. Гёдель показал, что всегда будут существовать истинные утверждения, доказательство которых нам недоступно. Оказалось, что математика вовсе не законченное, совершенное по конструкции здание и что завершить строительство не удастся никогда.
Тьюринг тоже принял участие в этой революции. Он показал, что в общем случае невозможно предсказать, потребуется ли машине Тьюринга на выполнение определенных математических операций по заданной ей программе конечное или бесконечное количество шагов. Но если на вычисление чего-то требуется бесконечное время, это означает, что то, что вы просите компьютер вычислить, вычислить вообще невозможно. Так Тьюринг доказал, что в математике существуют истинные выражения, которые невозможно вычислить, — они всегда останутся за пределами возможности компьютера, каким бы мощным он ни был.
Во время Второй мировой войны новаторские работы Тьюринга в области расшифровки кодированных сообщений спасли тысячи солдат союзников и, очень может быть, повлияли на исход войны. Союзники, будучи не в состоянии расшифровать нацистские сообщения, зашифрованные специальной машиной под названием «Энигма», попросили Тьюринга и его коллег построить для этого свою машину. В итоге Тьюрингу это удалось; его машина получила название «Бомба». К концу войны действовало уже больше 200 таких машин. В результате союзники долгое время читали секретные сообщения нацистов и сумели обмануть их по поводу времени и места решающего вторжения на континент. Историки до сих пор спорят о роли Тьюринга и его работ в планировании вторжения в Нормандию — вторжения, которое в конечном итоге привело к поражению Германии. (После войны британское правительство засекретило работы Тьюринга; в результате общество не знает, насколько важную роль он сыграл в этих событиях.)
Тьюринга не только не вознесли как героя, который помог переломить ход Второй мировой войны; нет, его попросту затравили до смерти. Однажды его дом обокрали, и ученый вызвал полицию. К несчастью, полиция обнаружила в доме свидетельства гомосексуализма хозяина и, вместо того чтобы искать воров, арестовала самого Тьюринга. Суд постановил подвергнуть его инъекции половых гормонов. Эффект оказался катастрофическим: у него выросли груди. В 1954 г. Тьюринг, не выдержав душевных мук, покончил с собой — съел яблоко, начиненное цианидом. (По слухам, надкушенное яблоко, ставшее логотипом корпорации Apple, — дань уважение Тьюрингу.)
Сегодня Тьюринга, вероятно, лучше всего знают благодаря тесту Тьюринга. Устав от бесплодных и бесконечных философских дебатов о том, может ли машина «думать» и есть ли у нее «душа», он попытался внести в дискуссию об искусственном интеллекте четкость и точность и придумал конкретный тест. Он предложил поместить машину и человека в отдельные изолированные и опечатанные помещения, а затем задавать обоим вопросы. Если вы окажетесь не в состоянии отличить по ответам машину от человека, можно считать, что машина прошла тест Тьюринга.
Ученые уже написали несколько несложных программ (к примеру, программа «Элиза»), способных имитировать разговорную речь и поддерживать беседу; компьютер с такой программой способен обмануть большинство ничего не подозревающих людей и убедить их в том, что они разговаривают с человеком. (Отметим, что в разговорах люди, как правило, ограничиваются десятком тем и используют всего несколько сотен слов.) Но программы, способной обмануть людей, которые знают о ситуации и сознательно пытаются отличить машину от человека, до сих пор не существует. (Сам Тьюринг предполагал, что к 2000 г. при экспоненциальном росте производительности компьютеров можно будет создать машину, способную обмануть в пятиминутном тесте 30% экспертов.)
Некоторые философы и теологи выступают в этом вопросе единым фронтом: они считают, что создать настоящего робота, способного думать как человек, невозможно. Философ из Университета Калифорнии в Беркли Джон Сирл предложил для доказательства этого тезиса «тест китайской комнаты». По существу, Сирл утверждает, что роботы хотя и смогут когда-нибудь, возможно, пройти тест Тьюринга в какой-то форме, это ничего не значит, потому что они всего лишь слепо манипулируют символами, совершенно не понимая вложенного в них содержания.
Представьте себе: вы, не понимая ни слова по-китайски, сидите в изолированном боксе. Предположим, у вас есть книга, при помощи которой вы можете очень быстро переводить с китайского и на китайский, а также манипулировать знаками этого языка. Если кто-то задает вам вопрос по-китайски, вы просто переставляете согласно книге эти странные значки и даете достоверный ответ; при этом вы не понимаете ни вопросов, ни собственных ответов.
Суть возражений Сирла сводится к разнице между синтаксисом и семантикой. По Сирлу, роботы способны овладеть синтаксисом языка (т.е. могут научиться корректно манипулировать его грамматикой, формальными структурами и т. п.), но не его истинной семантикой (т. е. смысловым значением слов). Роботы могут манипулировать словами, не понимая, что они означают. (В чем-то это напоминает разговор по телефону с автоответчиком, когда вы должны время от времени нажимать цифру «1», «2» и т.д., следуя указаниям машины. Голос на другом конце провода вполне способен правильно реагировать на ваши цифры, но странно было бы предположить, что он при этом что-то понимает.)
Физик Роджер Пенроуз из Оксфорда тоже считает, что искусственный интеллект невозможен; механическое существо, способное думать и обладающее человеческим сознанием, противоречит квантовым законам. Человеческий мозг, утверждает Пенроуз, настолько превосходит все созданное человеком в лаборатории, что эксперимент по созданию человекоподобных роботов просто обречен на провал. (Он считает, что как теорема Гёделя о неполноте доказала, что арифметика неполна, так принцип неопределенности Гейзенберга докажет, что машины в принципе не способны думать по-человечески.)
Однако многие физики и инженеры считают, что ничто в законах природы не противоречит созданию настоящего робота. К примеру, Клода Шеннона, которого часто называют отцом теории информации, однажды спросили: «Могут ли машины думать?» Он ответил: «Конечно». Когда же его попросили пояснить ответ, он добавил: «Я думаю, разве не так?» Иными словами, он счел очевидным, что машины могут думать, потому что люди тоже машины (хотя и сделаны из плоти и крови, а не из микросхем и проводов).
Наблюдая за кинематографическими роботами, можно подумать, что создание и развитие сложных роботов с искусственным интеллектом — дело ближайшего будущего. На самом деле все совсем не так. Если вы видите, что робот действует как человек, это, как правило, означает, что дело нечисто, — это какой-то фокус, скажем, в сторонке сидит человек и говорит за робота, как Гудвин в Волшебной стране. На самом деле даже самые сложные наши роботы, такие как марсианские роботы-роверы, обладают в лучшем случае интеллектом насекомого. Экспериментальные роботы знаменитой Лаборатории искусственного интеллекта MIT с трудом справляются с заданиями, доступными даже тараканам: к примеру, свободно передвигаться по комнате, заставленной мебелью, прятаться или распознавать опасность. Ни один робот на Земле не способен понять простую детскую сказку, которую ему прочитают.
Сюжет фильма «2001: космическая одиссея» основан на неверном предположении о том, что к 2001 г. у нас будет сверхробот HAL, способный пилотировать корабль к Юпитеру, непринужденно болтать с членами экипажа, решать возникающие проблемы и вообще действовать почти по-человечески.
Подход «сверху вниз»
Попытки ученых всего мира по созданию роботов встретились по крайней мере с двумя серьезными проблемами, которые не позволили сколько-нибудь заметно продвинуться в этом направлении: это распознавание образов и здравый смысл. Роботы видят гораздо лучше нас, но не понимают увиденного. Роботы слышат гораздо лучше нас, но не понимают услышанного.
Чтобы подступиться к решению этой двойной проблемы, исследователи пытались применить подход к искусственному интеллекту, известный как «сверху вниз» (иногда его еще называют формалистической школой или «старым добрым ИИ»), Целью ученых, грубо говоря, было запрограммировать все правила и законы распознавания образов и здравого смысла и записать эти программы на один CD-диск. Они считают, что любой компьютер, в который вы вставите этот диск, мгновенно осознает себя и станет разумным, не хуже человека. В 50-60-х гг. XX в. в этом направлении были достигнуты громадные успехи; появились роботы, способные играть в шашки и шахматы, решать алгебраические задачи, поднимать с пола кирпичики и т.п. Прогресс производил настолько сильное впечатление, что зазвучали даже пророчества о том, что через несколько лет роботы по разумности превзойдут людей.
К примеру, в 1969 г. настоящую сенсацию произвел робот Шейки, созданный в Стэнфордском исследовательском институте. Робот этот представлял собой небольшой компьютер типа PDP с камерой наверху, установленный на колесной тележке. Камера «осматривалась», компьютер анализировал и распознавал находящиеся в комнате объекты, а затем пытался провести тележку по маршруту, ничего не задев. Шейки первым из механических автоматов научился передвигаться в «реальном мире»; журналисты тогда горячо спорили, когда же наконец роботы обгонят людей в развитии.
Но вскоре проявились и недостатки подобных роботов. Подход к искусственному интеллекту, известный как «сверху вниз», привел к созданию громоздких неуклюжих роботов, которым требовалось несколько часов, чтобы научиться ориентироваться в специальной комнате, где находились только объекты с прямыми сторонами (прямоугольники и треугольники). Стоило поставить в комнату мебель неправильной формы, и робот был уже не в состоянии распознать ее. (Забавно, но плодовая мушка, мозг которой содержит всего лишь около 250 000 нейронов и которая по вычислительной мощи в подметки не годится любому роботу, без всякого труда ориентируется и передвигается в трех измерениях и исполняет фигуры высшего пилотажа; тем временем неуклюжие шумные роботы умудряются запутаться в двух измерениях.)
Вскоре подход «сверху вниз» как будто уткнулся в кирпичную стену: прогресс остановился. Стив Гранд, директор Института кибержизни, говорит, что у подобных подходов «было 50 лет, чтобы доказать свою состоятельность, и они не оправдали ожиданий».
В 1960-х гг. ученые еще не понимали, какую громадную работу нужно проделать, чтобы запрограммировать робота на выполнение даже самых простых задач, таких, например, как распознавание ключей, ботинок и чайных чашек. Как сказал Родни Брукс из MIT, «40 лет назад Лаборатория искусственного интеллекта MIT дала эту задачу студенту в качестве летнего задания. Студент потерпел неудачу — как и я в своей докторской диссертации 1981 г.». Вообще говоря, исследователи искусственного интеллекта до сих пор не могут решить эту задачу.
Рассмотрим пример. Входя в комнату, мы мгновенно распознаем пол, кресла, мебель, столы и т.п. При этом робот, осматривая комнату, видит в ней только набор линий, прямых и изогнутых, которые он переводит в пиксели изображения. И требуются громадные вычислительные мощности, чтобы извлечь из этой мешанины линий какой-то смысл. Нам достаточно доли секунды, чтобы узнать стол, но компьютер видит на месте стола только набор кругов, овалов, спиралей, прямых и кривых линий, углов и т. п. Может быть, затратив громадное количество компьютерного времени, робот в конце концов и распознает в этом объекте стол. Но если вы повернете изображение, ему придется начинать все сначала. Другими словами, робот способен видеть, причем гораздо лучше, чем человек, но он не способен понимать увиденное. Войдя в комнату, робот увидит только мешанину прямых и кривых линий, а не кресла, столы и лампы.
Когда мы входим в комнату, наш мозг неосознанно распознает объекты, производя при этом многие триллионы операций, — занятие, которого мы, к счастью, просто не замечаем. Причина того, что значительная часть действий мозга скрыта даже от нас самих, — эволюция. Представим себе человека, на которого в темном лесу напал саблезубый тигр; если он будет сознательно производить действия, необходимые для распознавания опасности и поиска путей к спасению, он просто не успеет сдвинуться с места. Для выживания нам надо знать одно — как бежать. Когда мы жили в джунглях, нам просто не было нужды сознавать все входящие и выходящие сигналы, с которыми имеет дело мозг при распознавании земли, неба, деревьев, скал и т. п.
Другими словами, действия нашего мозга напоминают огромный айсберг. То, что мы осознаем, лишь верхушка айсберга, сознание. Но под видимой поверхностью, скрытое от глаз, присутствует гораздо более объемное подсознание; оно задействует громадное количество «вычислительной мощи» мозга для того, чтобы мы постоянно были в курсе простых вещей: где мы, с кем разговариваем, что находится вокруг. Все эти действия мозг проделывает автоматически, не спрашивая нашего позволения и не отчитываясь о них; мы просто не замечаем этой работы.
Именно поэтому роботы не могут свободно ориентироваться в комнате, читать рукописный текст, водить машины, собирать мусор и т. п. На тщетные попытки создать механических солдат и умные грузовики американские военные потратили сотни миллионов долларов.
Только после этого ученые начали понимать, что игра в шахматы или перемножение громадных чисел задействует лишь крохотную долю человеческого разума. Победа в 1997 г. компьютера Deep Blue фирмы IBM над чемпионом мира по шахматам Гарри Каспаровым стала победой чисто компьютерной, т.е. вычислительной, мощи; однако, несмотря на громкие заголовки газет, этот эксперимент не сообщил нам ничего нового ни о разуме, ни о сознании. Дуглас Хофштадтер, ученый-компьютерщик из Индианского университета, сказал по этому поводу: «Боже мой, я-то считал, что для игры в шахматы нужно думать. Теперь я понимаю, что не нужно. Это не означает, что Каспаров не умеет глубоко размышлять; это означает только, что при игре в шахматы можно обойтись и без глубоких мыслей, точно так же, как можно летать, не взмахивая крыльями».
(Развитие компьютеров в будущем очень сильно скажется на рынке труда. Футурологи иногда заявляют, что через несколько десятилетий без работы не останутся только высококвалифицированные специалисты по устройству, производству и обслуживанию компьютеров. На самом деле это не так. Такие работники, как мусорщики, строители, пожарные, полицейские и т. п., тоже не останутся в будущем без работы, поскольку их труд включает в себя задачу распознавания образов. Каждое преступление, каждый кусок мусора, каждый инструмент и пожар отличаются от остальных; роботы с такой работой не справятся. По иронии судьбы работники со специальным образованием, такие как рядовые бухгалтеры, брокеры и кассиры, в будущем действительно могут лишиться работы — ведь их труд почти полностью состоит из повторяющихся действий и включает в себя работу с числами, а мы уже знаем, что именно с этим компьютеры справляются лучше всего.)
Вторая — после распознавания образов — проблема, с которой сталкиваются попытки создания роботов, еще более фундаментальна. Это отсутствие у роботов так называемого «здравого смысла», К примеру, каждый человек знает, что:
• Вода мокрая.
• Мать всегда старше дочери.
• Животные не любят боли.
• После смерти никто не возвращается.
• Веревка может тянуть, но не может толкать.
• Палка может толкать, но не может тянуть.
• Время не может идти задом наперед.
Но не существует такого исчисления, такой математики, которая могла бы выразить смысл этих высказываний. Мы знаем все это, потому что видели в жизни животных, воду и веревку и сами додумались до этих истин. Дети учатся здравому смыслу на ошибках, при неизбежных столкновениях с действительностью. Эмпирические законы биологии и физики также познаются на опыте — в процессе взаимодействия с окружающим миром. Но у роботов нет опыта такого рода. Они знают только то, что заложили в них программисты.
(В результате в будущем никто не отнимет у человека профессии, требующие здравого смысла, т. е. области деятельности, связанные с творчеством, оригинальностью, талантом, юмором, развлечениями, анализом и лидерством. Именно эти качества делают нас уникальными, именно их так трудно воспроизвести в компьютере. Именно они делают нас людьми.)
В прошлом математики неоднократно пытались соорудить волшебную программу, которая сосредоточила бы в себе раз и навсегда все законы здравого смысла. Самый амбициозный проект такого рода — CYC (сокращение от «энциклопедия»), детище Дугласа Лената, главы компании Сусогр. Подобно тому как в результате реализации Манхэттенского проекта — программы стоимостью 2 млрд долл. — была создана атомная бомба, проект CYC должен был стать «Манхэттенским проектом» искусственного интеллекта, последним толчком, в результате которого должен был появиться подлинный искусственный интеллект.
Не удивительно, что девиз Лената звучит гак: «Разум — это десять миллионов правил». (Ленат придумал новый способ отыскания законов здравого смысла; его сотрудники тщательно прочесывают страницы скандальных и сенсационных газетенок, после чего просят CYC найти в статьях ошибки. В самом деле, если Ленату удастся-таки этого добиться, CYC станет разумнее большинства читателей желтой прессы!)
Одна из задач проекта CYC — достичь «точки равенства», т.е. такого момента, когда робот будет понимать достаточно, чтобы самостоятельно переваривать новую информацию и черпать ее непосредственно из журналов и газет, которые найдутся в любой библиотеке. В этот момент CYC, как птенец, вылетевший из гнезда, сможет расправить крылья и обрести самостоятельность .
К сожалению, с момента основания фирмы в 1984 г. ее репутация сильно пострадала от общей для ИИ проблемы: ее представители делают громкие, но совершенно нереалистичные предсказания, которые только привлекают газетчиков. В частности, Ленат предсказывал, что через десять лет — к 1994 г. — в «мозгах» CYC будет содержаться уже от 30 до 50% «общеизвестной реальности». Но сегодня CYC и близко не подошел к этому показателю. Как выяснили ученые корпорации, необходимо написать многие миллионы строк программного кода, чтобы компьютер смог хотя бы приблизиться к уровню здравого смысла четырехлетнего ребенка. Пока программа CYC содержит жалкие 47 000 понятий и 306 000 фактов. Несмотря на стабильно оптимистичные пресс-релизы корпорации, газеты процитировали одного из сотрудников Лената Р.В. Гуха, покинувшего команду в 1994 г.: «CYC обычно считают неудачей... Мы вкалывали как проклятые, пытаясь создать бледную тень того, что было первоначально обещано».
Другими словами, попытки запрограммировать все законы здравого смысла и загнать их в один компьютер провалились просто потому, что у здравого смысла слишком много законов. Человек осваивает их без усилий — ведь он с самого рождения постоянно сталкивается с действительностью, постепенно впитывая в себя законы физики и биологии. С роботами все иначе.
"Основатель фирмы Microsoft Билл Гейтс признает: «Оказалось гораздо труднее, чем предполагалось, научить компьютеры и роботов воспринимать окружающее и реагировать на него быстро и точно... к примеру, ориентироваться в комнате по отношению к находящимся в ней предметам, отзываться на звук и понимать речь, брать разные по размерам, материалу и хрупкости предметы. Роботу чертовски трудно проделать даже такую простую вещь, как отличить открытую дверь от окна».
Однако сторонники подхода «сверху вниз» указывают, что прогресс в этой области, хотя и не такой быстрый, как хотелось бы, все же наблюдается. В лабораториях всего мира преодолеваются все новые рубежи. К примеру, несколько лет назад агентство DARPA, которое часто берет на себя финансирование самых передовых технических проектов, объявило приз в 2 млн долл. за создание автоматического транспортного средства, способного самостоятельноj без водителя, преодолеть сильно пересеченный рельеф пустыни Мохаве. В 2004 г. ни один из участников заезда не смог пройти маршрут. Лучшая машина сумела пройти 11,9 км, после чего вышла из строя. Но уже в 2005 г. машина без водителя, представленная группой Stanford Racing Team, успешно преодолела тяжелый маршрут протяженностью 212 км, хотя ей и потребовалось на это семь часов. Кроме победителя к финишу гонки пришли еще четыре машины. [Правда, критики отмечают, что правила позволяют машинам использовать системы спутниковой навигации на долгом пути в пустыне. В результате машина едет по заранее выбранному маршруту без особенных осложнений; это значит, что ей не приходится распознавать в пути сложные образы препятствий. В реальной жизни водитель должен учитывать множество непредсказуемых обстоятельств: движение других машин, пешеходов, ремонтные работы, дорожные пробки и т. п.)
Билл Гейтс с осторожным оптимизмом говорит, что роботы-машины могут стать «следующим большим скачком». Он сравнивает сегодняшнюю робототехнику с персональными компьютерами, которыми он занялся 30 лет назад. Очень может быть, что роботы сегодня, как персональные компьютеры тогда, уже готовы к стремительному старту. «Никто не может определенно сказать, когда эта индустрия наберет критическую массу, — пишет он. — Но если это произойдет, то роботы, возможно, изменят мир».
(Рынок человекоподобных разумных роботов, если они когда-нибудь появятся и станут коммерчески доступными, будет огромен. Хотя сегодня настоящих роботов нет, роботы с жесткой программой не только существуют, но быстро распространяются. По оценке Международной федерации робототехники, в 2004 г. существовало около 2 млн таких роботов, а к 2008 г. их появится еще 7 млн. Японская Ассоциация роботов предсказывает, что если сегодня оборот промышленности, занятой выпуском персональных роботов, составляет 5 млрд долл. в год, то к 2025 г. он достигнет 50 млрд долл.)
Подход «снизу вверх»
Ограниченность подхода «сверху вниз» к созданию искусственного интеллекта очевидна, поэтому с самого начала ученые исследуют и другой подход — «снизу вверх». Суть этого подхода заключается в том, чтобы, подражая эволюции, заставить робота учиться на собственном опыте, как учится младенец. Ведь насекомые, скажем, руководствуются при движении не тем, что сканируют картинку окружающего мира, разбивают ее на триллионы пикселей и обрабатывают полученное изображение при помощи суперкомпьютеров. Нет, мозг насекомого состоит из «нейронных сетей» — самообучающихся машин, которые медленно, натыкаясь на препятствия, осваивают искусство правильно передвигаться во враждебном мире. Известно, что в MIT с огромным трудом удалось создать шагающих роботов методом «сверху вниз». Зато простые механические существа вроде жуков, накапливающие опыт и информацию методом проб и ошибок (т.е. утыкаясь в препятствия), уже через несколько минут начинают успешно носиться по комнате.
Родни Брукс, директор прославленной Лаборатории искусственного интеллекта МГТ, знаменитой своими большими и неуклюжими шагающими роботами типа «сверху вниз», сам превратился в еретика, когда начал изучать идею крошечных «насекомоподобных» роботов, которые учатся ходить старым испытанным методом: спотыкаясь, падая, натыкаясь на всевозможные предметы. Вместо того чтобы использовать сложные компьютерные программы и математически вычислять при ходьбе точное положение каждой ноги в каждый момент времени, его «насекоботы» действуют методом проб и ошибок и обходятся небольшими вычислительными мощностями. Сегодня «потомки» крошечных роботов Брукса собирают на Марсе данные для NASA; они преодолевают километры унылых марсианских ландшафтов по собственному разумению. Брукс считает, что насекоботы идеально подходят для исследования Солнечной системы.
Одним из новых проектов Брукса стал COG — попытка создать механического робота с разумом шестимесячного младенца. Внешне робот представляет собой мешанину проводов, электрических цепей и приводов, но снабжен головой, глазами и руками. В нем нет программы, определяющей какие бы то ни было законы разума. Вместо этого робота научили фокусировать глаза и следить за человеком-тренером; который пытается научить робота простым навыкам. (Одна из сотрудниц, забеременев, заключила пари о том, кто сделает большие успехи к возрасту двух лет: COG или ее будущий ребенок. Ребенок намного обогнал «соперника».)
Несмотря на успешное подражание поведению насекомых, роботы с нейронными сетями выглядят довольно жалко, когда создатели пытаются заставить их подражать поведению высших организмов, таких как млекопитающие. Самый продвинутый робот с нейронными сетями способен ходить по комнате или плавать в воде, но не может прыгать и охотиться, как собака в лесу, или исследовать комнату, как крыса. Крупные роботы на нейронных сетях содержат десятки, максимум сотни «нейронов»; при этом человеческий мозг насчитывает более 100 млрд нейронов. Нервная система очень простого червя Caenorhabditis elegans, полностью изученная биологами и нанесенная на карту, состоит из 300 с небольшим нейронов; вероятно, это одна из простейших нервных систем в природе. Но и в этой системе между нейронами наблюдается более 7000 связей-синапсов. Как бы ни был примитивен С. elegans, его нервная система настолько сложна, что никому еще не удалось создать компьютерную модель такого мозга. (В 1988 г. один компьютерный эксперт предсказал, что к настоящему моменту у нас будут роботы примерно со 100 млн искусственных нейронов. На самом же деле нейронная сеть из ста нейронов уже считается выдающейся.)
Ирония ситуации заключается в том, что машины неустанно выполняют задания, которые людям кажутся «трудными», скажем перемножают большие числа или играют в шахматы, но застревают на совершенно «простых» для человека заданиях, таких как походить по комнате, узнать кого-то по лицу или посплетничать с приятелем. Причина в том, что даже самые продвинутые наши компьютеры в основе своей всего лишь усложненные до предела счетные машинки. А наш мозг эволюция сформировала таким образом, чтобы он мог решать глобальную задачу выживания. Для этого необходима сложная и хорошо организованная структура мышления, включающая в себя здравый смысл и распознавание образов. Сложные вычисления или шахматы не нужны для выживания в лесу—зато там не обойтись без умения удрать от хищника, найти себе пару и приспособиться к меняющимся условиям.
Вот как обобщил проблемы ИИ Марвин Мински из MIT, один из основателей науки об искусственном интеллекте: «История ИИ в чем-то забавна — ведь первыми реальными достижениями в этой области были красивые машинки, способные к логическим доказательствам и сложнейшим вычислениям. Но затем мы захотели сделать машину, которая умела бы отвечать на вопросы по простым рассказам, какие можно найти в книжке для первоклассников. На сегодняшний день не существует машины, способной на это».
Некоторые ученые считают, что когда-нибудь два подхода — «сверху вниз» и «снизу вверх» — сольются воедино, и такое слияние может стать ключом к созданию настоящего искусственного интеллекта и человекоподобных роботов. В конце концов, когда ребенок учится, он пользуется обоими методами: сначала маленький человек полагается в основном на методику «снизу вверх» — он натыкается на предметы, ощупывает их, пробует на вкус и т. п.; но затем он начинает получать словесные уроки от родителей и учителей, из книг — в этот момент приходит время для подхода «сверху вниз». Даже будучи взрослыми, мы постоянно смешиваем оба подхода. К примеру, повар читает рецепт, но не забывает и пробовать блюдо, которое готовит.
Ганс Моравек говорит: «Полностью разумные машины появятся не раньше, чем будет забит золотой костыль, который соединит оба пути». Он считает, что произойдет это, вероятно, в ближайшие 40 лет.
Дата добавления: 2015-03-07; просмотров: 785;