С х е м а ИЛИ—НЕ

Схема ИЛИ—НЕ состоит из элемента ИЛИ и инвертора, и осуществляет отрицание результата схемы ИЛИ. Связь между выходом z и входами x и y схемы записывают следующим образом: , где , читается как "инверсия x или y ". Условное обозначение на структурных схемах схемы ИЛИ—НЕ с двумя входами представлено на рис. 5.5.


Рис. 5.5

Таблица истинности схемы ИЛИ—НЕ

x y

 

6.7. Что такое триггер?

Триггер— это электронная схема, широко применяемая в регистрах компьютера для надёжного запоминания одного разряда двоичного кода. Триггер имеет два устойчивых состояния, одно из которых соответствует двоичной единице, а другое — двоичному нулю.

Термин триггер происходит от английского слова trigger — защёлка, спусковой крючок. Для обозначения этой схемы в английском языке чаще употребляется термин flip-flop, что в переводе означает “хлопанье”. Это звукоподражательное название электронной схемы указывает на её способность почти мгновенно переходить (“перебрасываться”) из одного электрического состояния в другое и наоборот.

Самый распространённый тип триггера — так называемый RS-триггер (S и R, соответственно, от английских set — установка, и reset — сброс). Условное обозначение триггера — на рис. 5.6.


Рис. 5.6

Он имеет два симметричных входа S и R и два симметричных выхода Q и , причем выходной сигнал Q является логическим отрицанием сигнала .

На каждый из двух входов S и R могут подаваться входные сигналы в виде кратковременных импульсов ( ).

Наличие импульса на входе будем считать единицей, а его отсутствие — нулем.

На рис. 5.7 показана реализация триггера с помощью вентилей ИЛИ—НЕ и соответствующая таблица истинности.


Рис. 5.7

S R Q
запрещено
хранение бита

Проанализируем возможные комбинации значений входов R и S триггера, используя его схему и таблицу истинности схемы ИЛИ—НЕ (табл. 5.5).

  1. Если на входы триггера подать S=“1”, R=“0”, то (независимо от состояния) на выходе Q верхнего вентиля появится “0”. После этого на входах нижнего вентиля окажется R=“0”, Q=“0” и выход станет равным “1”.
  2. Точно так же при подаче “0” на вход S и “1” на вход R на выходе появится “0”, а на Q — “1”.
  3. Если на входы R и S подана логическая “1”, то состояние Q и не меняется.
  4. Подача на оба входа R и S логического “0” может привести к неоднозначному результату, поэтому эта комбинация входных сигналов запрещена.

Поскольку один триггер может запомнить только один разряд двоичного кода, то для запоминания байта нужно 8 триггеров, для запоминания килобайта, соответственно, 8 х 210 = 8192 триггеров. Современные микросхемы памяти содержат миллионы триггеров.

6.8. Что такое сумматор?

Сумматор —это электронная логическая схема, выполняющая суммирование двоичных чисел.

Сумматор служит, прежде всего, центральным узлом арифметико-логического устройства компьютера, однако он находит применение также и в других устройствах машины.

Многоразрядный двоичный сумматор, предназначенный для сложения многоразрядных двоичных чисел, представляет собой комбинацию одноразрядных сумматоров, с рассмотрения которых мы и начнём. Условное обозначение одноразрядного сумматора на рис. 5.8.


Рис. 5.8

При сложении чисел A и B в одном i-ом разряде приходится иметь дело с тремя цифрами:

1. цифра ai первого слагаемого;

2. цифра bi второго слагаемого;

3. перенос pi–1 из младшего разряда.

 

В результате сложения получаются две цифры:

1. цифра ci для суммы;

2. перенос pi из данного разряда в старший.

Таким образом, одноразрядный двоичный сумматор есть устройство с тремя входами и двумя выходами, работа которого может быть описана следующей таблицей истинности:

 

Входы Выходы
Первое слагаемое Второе слагаемое Перенос Сумма Перенос

 

Если требуется складывать двоичные слова длиной два и более бит, то можно использовать последовательное соединение таких сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого.

Например, схема вычисления суммы C = (с3 c2 c1 c0) двух двоичных трехразрядных чисел A = (a2 a1 a0) и B = (b2 b1 b0) может иметь вид:

6.9. Какие основные законы выполняются в алгебре логики?

В алгебре логики выполняются следующие основные законы, позволяющие производить тождественные преобразования логических выражений:

 








Дата добавления: 2015-01-13; просмотров: 721;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.