Классическая механика

В ньютоновской механике формулируется частный случай закона сохранения энергии — закон сохранения механической энергии, звучащий следующим образом: полная механи­ческая энергия Ематериальной точки не изменяется при движении этой точки в поле потенциальных сил: Е= const. Так как полная механическая энергия, по определению, равна сумме потенциальной энергии П и кинетической энергии Т, то закон сохранения полной механической энергии может быть записан в виде

Т + П = const. (1.4)

Следует отметить, что при движении в поле непотен­циальных сил (например, силы трения) полная механи­ческая энергия не сохраняется. Легко показать, что закон сохранения полной меха­нической энергии тесно связан с основным уравнением механики (1.1).

Для этого вспомним, что работа силы А, с одной стороны, равна разности потенциальных энергии в начале и в конце траектории П1 - П2, а с другой — эта же самая работа равна разности кинетических энергий в кон­це и в начале траектории T2 – T1.Остается приравнять П1 - П2 21 и получить (1.4).

Классическим примером этого утверждения являются пружинный или математический маятники с пренебрежимо малым затуханием. В случае пружинного маятника в процессе колебаний потенциальная энергия деформированной пружины (имеющая максимум в крайних положениях груза) переходит в кинетическую энергию груза (достигающую максимума в момент прохождения грузом положения равновесия) и обратно. В случае математического маятника аналогично ведёт себя потенциальная энергия груза в поле силы тяжести.








Дата добавления: 2015-02-23; просмотров: 519;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.