Измерительные трансформаторы
Измерительные трансформаторы используются главным образом для подключения электроизмерительных приборов в цепи переменного тока высокого, напряжения. При этом электроизмерительные приборы оказываются изолированными от цепей высокого напряжений, что обеспечивает безопасность работы обслуживающего персонала. Кроме того, измерительные трансформаторы дают возможность расширять пределы измерения приборов, т. е. измерять большие токи и напряжения с помощью сравнительно несложных приборов, рассчитанных для измерения малых токов и напряжений. В ряде случаев измерительные трансформаторы служат для подключения к цепям высокого напряжения обмоток реле, обеспечивающих защиту электрических установок от аварийных режимов.
Измерительные трансформаторы подразделяются на два типа: трансформаторы напряжения и трансформаторы тока. Первые служат для включения вольтметров, а также других приборов, реагирующих на величину напряжения, например катушек напряжения ваттметров, счетчиков, фазометров и различных реле. Вторые служат для включения амперметров и токовых катушек указанных приборов. Измерительные трансформаторы изготовляют мощностью от пяти до нескольких сот вольт-ампер, они рассчитаны для работы совместно со стандартными приборами (амперметрами на 1 и 5 а, вольтметрами до 100 в).
Трансформатор напряжения. Выполняется как обычный двухобмоточный понижающий трансформатор (рис. 1.19). Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют. Так как сопротивление обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велико, то он фактически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, что
, (1.77)
Рис. 1.19. Схема включения трансформатора напряжения
В действительности ток холостого хода (а также небольшой ток нагрузки) создает в трансформаторе падение напряжения; поэтому и между векторами этих напряжений имеется некоторый сдвиг по фазе . В результате этого при измерениях создаются некоторые погрешности.
В измерительных трансформаторах напряжения различают два вида погрешностей:
а) относительная погрешность коэффициента трансформации, или погрешность напряжения; величина ее
(1.78)
б) угловая погрешность ; за величину ее принимается угол между векторами и .Она влияет на результаты измерений, выполненных с помощью ваттметров, счетчиков, фазометров и прочих приборов, показания которых зависят не только от величины тока и напряжения, но и от угла сдвига фаз между ними. Угловая погрешность считается положительной, если вектор опережает вектор .
В зависимости от величины допускаемых погрешностей трансформаторы напряжения подразделяются на четыре класса точности: 0,2; 0,5; 1 и 3. Обозначение класса соответствует величине относительной погрешности при номинальном напряжении . Угловая погрешность составляет 10-40 минут (для 3-го класса она не нормируется). Для уменьшения погрешностей и сопротивления обмоток трансформатора z1 и z2 делают по возможности малыми, а сердечник выполняют из высококачественной стали достаточно большого поперечного сечения, чтобы в рабочем режиме он был не насыщен (B 0,6 - 0,8 тл). Благодаря этому обеспечивается значительное уменьшение тока холостого хода.
Трансформатор тока. Выполняется в виде обычного двухобмоточного повышающего трансформатора (рис. 1.20, а) или в виде проходного трансформатора, у которого первичной обмоткой служит провод, проходящий через окно магнитопровода. В некоторых конструкциях магнитопровод и вторичная обмотка смонтированы на проходном изоляторе, служащем для ввода высокого напряжения в силовой трансформатор или другую электрическую установку; роль первичной обмотки трансформатора выполняет медный стержень, проходящий внутри изолятора (рис. 1.20, б).
Рис. 1.20. Схема включения трансформатора тока (а), общий вид проходного трансформатора (б)
Сопротивление обмоток амперметров и других приборов, подключаемых к трансформатору тока, обычно мало. Поэтому он практически работает в режиме короткого замыкания, в котором токи и во много раз больше тока , и с достаточной степенью точности можно считать, что
(1.79)
В действительности из-за наличия тока холостого хода в рассматриваемом трансформаторе и между векторами этих токов имеется некоторый угол, отличный от 180°. Это создает токовую погрешность
(1.80)
и угловую погрешность, измеряемую углом между векторами и . Погрешность считается положительной, если вектор опережает вектор .
В зависимости от величины допускаемых погрешностей трансформаторы тока подразделяются на пять классов точности: 0,2: 0,5; 1; 3 и 10. Эти цифры соответствуют допускаемой для данного класса токовой погрешности при номинальной величине тока. Угловая погрешность для первых трех классов составляет 10 – 80 мин, а для двух последних не нормируется. Для уменьшения указанных погрешностей сердечник трансформатора тока изготовляют из высококачественной стали достаточно большого сечения, чтобы в рабочем режиме он был не насыщен (B = 0,06 - 0,1 тл). При этих условиях ток холостого хода будет мал.
Следует отметить, что размыкание цепи вторичной обмотки трансформатора тока недопустимо. В этом случае трансформатор переходит в режим холостого хода и его результирующая м.д.с., которая в рабочем режиме была равна становится равной . В результате резко (в десятки и сотни раз) возрастает магнитный поток Фт в сердечнике, и индукция в стали достигает значения более 2 тл. Соответственно с этим резко возрастают потери в стали и трансформатор может сгореть. Еще большую опасность представляет резкое повышение напряжения на зажимах вторичной обмотки до нескольких сот и даже тысяч вольт. Для предотвращения режима холостого хода при отключении приборов нужно замыкать вторичную обмотку трансформатора тока накоротко.
Дата добавления: 2015-02-23; просмотров: 1262;