Спонтанное и вынужденное излучения
Как отмечалось выше, атомы могут находиться лишь в квантовых состояних с дискретными значениями энергии E1, Е2, Ет,.... Ради простоты рассмотрим только два из этих состояний (1 и 2) с энергиями Е1 и Е2. Если атом находится в основном состоянии 1, то под действием внешнего излучения может осуществиться вынужденный переход в возбужденное состояние 2 (рис. 309, а), приводящий к поглощению излучения. Вероятность подобных переходов пропорциональна плотности излучения, вызывающего эти переходы.
Рис. 309
Атом, находясь в возбужденном состоянии 2, может через некоторый промежуток времени спонтанно, без каких-либо внешних воздействий, перейти в состояние с низшей энергией (в нашем случае в основное), отдавая избыточную энергию в виде электрома нитного излучения (испуская фотон с энергией hv = E2 – E1). Процесс испускания фотона возбужденным атомом (возбужденной микросистемой) без каких-либо внешних воздействий называется спонтанным (или самопроизвольным) излучешкм (рис. 309, б). Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Так как спонтанные переходы взаимно не связаны, то спонтанное излучение некогерентно.
В 1916 г. А. Эйнштейн для объяснения наблюдавшегося на опыте термодинамического равновесия между веществом и испускаемым и поглощаемым им излучением постулировал, что помимо поглощения и спонтанного излучения должен существовать третий, качественно иной тип взаимодействия. Если на атом, находящийся в возбужденном состоянии 2, действует внешнее излучение с частотой, удовлетворяющей условию hv = E2 – E1, то возникает вынужденный (индуцированный) переход в основное состояние 1 с излучением фотона той же энергии hv = E2 – E1 (рис. 309, в). При подобном переходе происходит излучение атомом фотона дополнительно к тому фотону, под действием которого произошел переход. Возникающее в результате таких переходов излучение называется вынужденным (индуцированным) излучением. Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызывающий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Существенно, что вторичные фотоны неотличимы от первичных, являясь точной их копией.
В статистической физике известен принцип детального равновесия, согласно которому при термодинамическом равновесии каждому процессу можно сопоставить обратный процесс, причем скорости их протекания одинаковы. А. Эйнштейн применил этот принцип и закон сохранения энергии при рассмотрении излучения и поглощения электромагнитных волн в случае черного тела. Из условия, что при равновесии полная вероятность испускания (спонтанного и вынужденного) фотонов равна вероятности поглощения фотонов той же частоты, Эйнштейн получил выведенную ранее Планком формулу (200.3).
Эйнштейн и Дирак показали, что вынужденное излучение (вторичные фотоны) тождественно вынуждающему излучению (первичным фотонам): оно имеет такие же частоту, фазу, поляризацию и направление распространения, как и вынуждающее излучение. Следовательно, вынужденное излучение строго когерентно с вынуждающим излучением, т. е. испущенный фотон неотличим от фотона, падающего на атом.
Испущенные фотоны, двигаясь в одном направлении и встречая другие возбужденные атомы, стимулируют дальнейшие индуцированные переходы, и число фотонов растет лавинообразно. Однако наряду с вынужденным излучением возможен и конкурирующий процесс — поглощение. Поэтому для усиления падающего излучения необходимо, чтобы число актов вынужденного излучения фотонов (оно пропорционально заселенности возбужденных состояний) превышало число актов поглощения фотонов (оно пропорционально заселенности основных состояний). В системе атомов, находящейся в термодинамическом равновесии, поглощение падающего излучения будет преобладать над вынужденным, т.е. падающее излучение при прохождении через вещество будет ослабляться.
Чтобы среда усиливала падающее на нее излучение, необходимо создать неравновесное состояние системы, при котором число атомов в возбужденных состояниях было бы больше, чем их число в основном состоянии. Такие состояния называются состояниями с инверсией населенностей. Процесс создания неравновесного состояния вещества (перевод системы в состояние с инверсией населенностей) называется накачкой. Накачку можно осуществить оптическими, электрическими и другими способами.
В средах с инверсными состояниями вынужденное излучение может превысить поглощение, вследствие чего падающий пучок света при прохождении через эти среды будет усиливаться (эти среды называются активными). В данном случае явление протекает так, как если бы в законе Бугера I = I0-ax (см. (187.1)) коэффициент поглощения a, зависящий, в свою очередь, от интенсивности излучения, стал отрицательным. Активные среды поэтому можно рассматривать в качестве сред с отрицательным коэффициентом поглощения.
Впервые на возможность получения сред, в которых свет может усиливаться за счет вынужденного излучения, указал в 1939 г. российский физик В. А. Фабрикант, экспериментально обнаружив вынужденное излучение паров ртути, возбужденных при электрическом разряде. Открытие явления усиления электромагнитных волн и изобретенный способ их усиления (В. А. Фабрикант, М. М. Вудынский, Ф. А. Бугаева; 1951) легли в основу квантовой электроники, положения которой позволили впоследствии осуществить квантовые усилители и квантовые генераторы света.
§ 233. Оптические квантовые генераторы (лазеры)
Практически инверсное состояние среды осуществлено в принципиально новых источниках излучения — оптических квантовых генераторах, или лазерах (от первых букв английского названия Light Amplification by Stimulated Emission of Radiation — усиление света с помощью вынужденного излучения). Лазеры генерируют в видимой, инфракрасной и ближней ультрафиолетовой областях (в оптическом диапазоне). Идея качественно нового принципа усиления и генерации электромагнитных волн, примененная в мазерах (генераторы и усилители, работающие в сантиметровом диапазоне радиоволн) и лазерах, принадлежит российским ученым Н. Г. Басову (р. 1922) и А. М. Прохорову (р. 1916) и американскому физику Ч. Таунсу (р. 1915), удостоенным Нобелевской премии 1964 г.
Важнейшими из существующих типов лазеров являются твердотельные, газовые, полупроводниковые и жидкостные (в основу такого деления положен тип активной среды). Более точная классификация учитывает также и методы накачки — оптические, тепловые, химические, электроионизационные и др. Кроме того, необходимо принимать во внимание и режим генерации — непрерывный или импульсный.
Лазер обязательно имеет три основных компонента: 1) активную среду, в которой создаются состояния с инверсией населенностей; 2) систему накачки (устройство для создания инверсии в активной среде); 3) оптический резонатор (устройство, выделя ющее в пространство избирательное направление пучка фотонов и формирующее выходящий световой пучок).
Первым твердотельным лазером (1960; США), работающим в видимой области спектра (длина волны излучения 0,6943 мкм), был рубиновый лазер (Т. Мейман (р. 1927)). В нем инверсная населенность уровней осуществляется по трехуровневой схеме, предложенной в 19SS г. Н. Г. Басовым и А. М. Прохоровым. Кристалл рубина представляет собой оксид алюминия А12О3, в кристаллической решетке которого некоторые из атомов А1 замещены трехвалентными ионами Сг3+ (0,03 и 0,05% ионов хрома соответственно для розового и красного рубина). Для оптической накачки используется импульсная газоразрядная лампа. При интенсивном облучении рубина светом мощной импульсной лампы атомы хрома переходят с нижнего уровня 1на уровни широкой полосы 3 (рис. 310).
Рис. 310
Так как время жизни атомов хрома в возбужденных состояниях мало (меньше 10-7 с), то осуществляются либо спонтанные переходы 3®1(они незначительны), либо наиболее вероятные беэызлучательные переходы на уровень 2(он называется метастабильным) с передачей избытка энергии решетке кристалла рубина. Переход 2®1запрещен правилами отбора, поэтому длительность возбужденного состояния 2 атомов хрома порядка 10-3 с, т.е. примерно на четыре порядка больше, чем для состояния 3. Это приводит к «накоплению» атомов хрома на уровне 2. При достаточной мощности накачки их концентрация на уровне 2 будет гораздо больше, чем на уровне 1, т. е. возникает среда с инверсной населенностью уровня 2.
Каждый фотон, случайно родившийся при спонтанных переходах, в принципе может инициировать (порождать) в активной среде множество вынужденных переходов 2®1, в результате чего появляется лавина вторичных фотонов, являющихся копиями первичных. Таким образом и зарождается лазерная генерация. Однако спонтанные переходы носят случайный характер, и спонтанно рождающиеся фотоны испускаются в разных направлениях. Тем самым в самых разных направлениях распространяются и лавины вторичных фотонов. Следовательно, излучение, состоящее из подобных лавин, не может обладать высокими когерентными свойствами.
Для выделения направления лазерной генерации используется принципиально важный элемент лазера — оптический резонатор. В простейшем случае им служит пара обращенных друг к другу параллельных (или вогнутых) зеркал на общей оптической оси, между которыми помещается активная среда (кристалл или кювета с газом). Как правило, зеркала изготовляются так, что от одного из них излучение полностью отражается, а второе — полупрозрачно. Фотоны, движущиеся под углами к оси кристалла или кюветы, выходят из активной среды через ее боковую поверхность. Те же из фотонов, которые движутся вдоль оси, многократно отразятся от противоположных торцов, каждый раз вызывая вынужденное испускание вторичных фотонов, которые, в свою очередь, вызовут вынужденное излучение, и т. д. Так как фотоны, возникшие при вынужденном излучении, движутся в том же направлении, что и первичные, то поток фотонов, параллельный оси кристалла или кюветы, будет лавинообразно нарастать. Многократно усиленный поток фотонов выходит через полупрозрачное зеркало, создавая строго направленный световой пучок огромной яркости. Таким образом, оптический резонатор «выясняет» направление (вдоль оси) усиливаемого фотонного потока, формируя тем самым лазерное излучение с высокими когерентными свойствами. Первым газовым лазером непрерывного действия (1961) был лазер на смеси атомов неона и гелия. Газы обладают узкими линиями поглощения, лампы же излучают свет в широком интервале длин волн; следовательно, применять их в качестве накачки невыгодно, так как используется только часть мощности лампы. Поэтому в газовых лазерах инверсная населенность уровней осуществляется электрическим разрядом, возбуждаемым в газах.
В гелий-неоновом лазере накачка происходит в два этапа: гелий служит носителем энергии возбуждения, а неон дает лазерное излучение. Электроны, образующиеся в разряде, при столкновениях возбуждают атомы гелия, которые переходят в возбужденное состояние 3 (рис. 311).
Рис. 311
При столкновениях возбужденных атомов гелия с атома ми неона происходит их возбуждение и они переходят на один из верхних уровней неона, который расположен вблизи соответствующего уровня гелия. Переход атома неона с верхнего уровня 3на один из нижних уровней 2приводит к лазерному излучению с l=0,6328 мкм.
Лазерное излучение обладает следующими свойствами:
1. Временная и пространственная когерентность (см. § 171). Время когерентности составляет 10 -3 с, что соответствует длине когерентности порядка 105 м (lког = сtког), т. е. на семь порядков выше, чем для обычных источников света.
2. Строгая монохроматичность (Dl < 10-11 м).
3. Большая плотность потока энергии. Если, например, рубиновый стержень при накачке получил энергию W = 20Дж и высветился за 10-3 с, то поток излучения Фе=20/10-3 Дж/с = 2×104 Вт. Фокусируя это излучение на площади 1 мм2, получим плотность потока энергии Фе/S = 2×104/10-6 Вт/м2 = 2×1010 Вт/м2.
4. Очень малое угловое расхождение в пучке. Например, при использовании специальной фокусировки луч лазера, направленный с Земли, дал бы на поверхности Луны световое пятно диаметром примерно 3 км (луч прожектора осветил бы поверхность диаметром примерно 40 000 км).
К.п.д. лазеров колеблется в широких пределах — от 0,01% (для гелий-неонового лазера) до 75% (для лазера на стекле с неодимом), хотя у большинства лазеров к.п.д. составляет 0,1—1%. Создан мощный СО2-лазер непрерывного действия, генерирующий инфракрасное излучение (l = 10,6 мкм), к.п.д. которого (30%) превосходит к.п.д. существующих лазеров, работающих при комнатной температуре.
Необычные свойства лазерного излучения находят в настоящее время широкое применение.
Применение лазеров для обработки, резания и микросварки твердых материалов оказывается экономически более выгодным (например, пробивание калиброванных отверстий в алмазе лазерным лучом сократило время с 24 ч до 6—8 мин). Лазеры применяются для скоростного и точного обнаружения дефектов в изделиях, для тончайших операций (например, луч CO2-лазера в качестве бескровного хирургического ножа), для исследования механизма химических реакций и влияния на их ход, для получения сверхчистых веществ. Широко применяется лазерное разделение изотопов, например такого важного в энергетическом отношении элемента, как уран.
Одним из важных применений лазеров является получение и исследование высоко температурной плазмы. Эта область их применения связана с развитием нового направления — лазерного управляемого термоядерного синтеза.
Лазеры широко применяются в измерительной технике. Лазерные интерферометры (в них источником света служит лазер) используются для сверхточных дистанционных измерений линейных перемещений, коэффициентов преломления среды, давления, температуры. Например, рассмотренный выше гелий-неоновый лазер из-за излучения высокой стабильности, направленности и монохроматичности (полоса частот 1 Гц при частоте 1014 Гц) незаменим при юстировочных и нивелировочных работах.
Интересное применение лазеры нашли в голографии (см. § 184). Для создания систем голографической памяти с высокой степенью считывания и большой емкостью необходимы газовые лазеры видимого диапазона еще более высокой монохроматичности и направленности излучения.
Очень перспективны и интересны полупроводниковые лазеры, так как они обладают широким рабочим диапазоном (0,7—30 мкм) и возможностью плавной перестройки частоты их излучения.
Применения лазеров в настоящее время столь обширны, что даже их перечисление в объеме настоящего курса просто невозможно.
Задачи
29.1. Определить, сколько различных волновых функций соответствует главному квантовому числу n=5.125]
29.2. Построить и объяснить диаграмму, иллюстрирующую расщепление энергетических уровней и спектральных линий (с учетом правил отбора) при переходах между состояниями с l =2 и l =1. [d®р-переход].
29.3. Принимая, что уравнению Шредингера для 1s-состояния электрона в атоме водорода удовлетворяет функция Y = Ce-r/a (С— некоторая постоянная), показать, что a = ℏ24pe0/(me2),равная первому воровскому радиусу. Учесть, что 1s-состояние сферически-симметрично.
29.4. Электрон в атоме находится в f-состоянии. Определить: 1) момент импульса (орбитальный) Ll электрона; 2) максимальное значение проекции момента импульса Llzmax на направление внешнего магнитного поля. [1) 3.46ℏ; 2) Зℏ]
29.5. Заполненной электронной оболочке соответствует главное квантовое число n = 3. Определить число электронов в этой оболочке, которые имеют одинаковые следующие квантовые числа: 1) ms=1/2 и l = 2; 2) ms = 1/2и ml = 0. [1) 5; 2) 3]
29.6. Минимальная длина волны рентгеновского излучения, полученного от трубки, работающей при напряжении 50 кВ, равна 24,8 нм. Определить по этим данным постоянную Планка. [6,61×1034 Дж-с]
29.7. Определить самую длинноволновую линию K-серии характеристического рентгеновского спектра, если анод рентгеновской трубки изготовлен из платины. Постоянную экранирования принять равной единице. [20 пм]
Дата добавления: 2015-02-13; просмотров: 1653;