Системы автоматизированного проектирования РЭС и их место среди других автоматизированных систем
Этапы жизненного цикла промышленных изделий
Жизненный цикл промышленных изделий включает ряд этапов, начиная от зарождения идеи нового продукта до утилизации по окончании срока его использования. Основные этапы жизненного цикла промышленной продукции представлены на рис. 4.2. К ним относятся этапы проектирования, технологической подготовки производства (ТПП), собственно производства, реализации продукции, эксплуатации и, наконец, утилизации.
На всех этапах жизненного цикла изделий имеются свои целевые установки. При этом участники жизненного цикла стремятся достичь поставленных целей с максимальной эффективностью. На этапах проектирования, ТПП и производства нужно обеспечить выполнение ТЗ при заданной степени надежности изделия и минимизации материальных и временных затрат, что необходимо для достижения успеха в конкурентной борьбе в условиях рыночной экономики. Понятие эффективности включает в себя не только снижение себестоимости продукции и сокращение сроков проектирования и производства, но и обеспечение удобства освоения и снижения затрат на будущую эксплуатацию изделий. Особую важность требования удобства эксплуатации имеют для сложной техники, например в таких отраслях, как авиа- или автомобилестроение.
Достижение поставленных целей на современных предприятиях, выпускающих сложные промышленные изделия, оказывается невозможным без широкого использования автоматизированных систем (АС), основанных на применении компьютеров и предназначенных для создания, переработки и использования всей необходимой информации о свойствах изделий и сопровождающих процессов. Специфика задач, решаемых на различных этапах жизненного цикла изделий, обусловливает разнообразие применяемых АС.
Основные типы АС с их привязкой к тем или иным этапам жизненного цикла изделий указаны на рис. 4.2 [55].
Рис. 4.2. Этапы жизненного цикла промышленных изделий и используемые АС
Автоматизация проектирования осуществляется САПР [70, 71]. Принято выделять в САПР радиоэлектронной отрасли промышленности системы функционального, конструкторского и технологического проектирования. Первые из них называют системами расчетов и инженерного анализа, или системами САЕ (Computer Aided Engineering). Системы конструкторского проектирования называют системами CAD (Computer Aided Design). Проектирование технологических процессов составляет часть технологической подготовки производства и выполняется в системах САМ (Computer Aided Manufacturing). Функции координации работы систем CAE/CAD/CAM, управления проектными данными и проектированием возложены на систему управления проектными данными PDM (Product Data Management).
Уже на стадии проектирования требуются услуги системы управления цепочками поставок (SCM — Supply Chain Management), иногда называемой системой Component Supplier Management (CSM). На этапе производства эта система управляет поставками необходимых материалов и комплектующих.
Информационная поддержка этапа производства продукции осуществляется автоматизированными системами управления предприятием (АСУП) и автоматизированными системами управления технологическими процессами (АСУТП). К АСУП относятся системы планирования и управления предприятием ERP (Enterprise Resource Planning), планирования производства и требований к материалам MRP-2 (Manufacturing Requirement Planning), производственная исполнительная система MES (Manufacturing Execution Systems), а также SCM и система управления взаимоотношениями с заказчиками CRM (Customer Requirement Management).
Наиболее развитые системы ERP выполняют различные бизнес-функции. Они связаны с планированием производства, закупками, сбытом продукции, анализом перспектив маркетинга, управлением финансами, персоналом, складским хозяйством, учетом основных фондов и т. п. Системы MRP-2 ориентированы главным образом на бизнес-функции, непосредственно связанные с производством, а системы MES — на решение оперативных задач управления проектированием, производством и маркетингом.
На этапе реализации продукции выполняются функции управления отношениями с заказчиками и покупателями, проводится анализ рыночной ситуации, определяются перспективы спроса на планируемые изделия. Эти функции осуществляет система CRM. Маркетинговые задачи иногда возлагаются на систему S&SM (Sales and Service Management), которая, кроме того, используется для решения проблем обслуживания изделий. На этапе эксплуатации применяют также специализированные компьютерные системы, занятые вопросами ремонта, контроля, диагностики эксплуатируемых систем.
Автоматизированные системы управления технологическими процессами контролируют и используют данные, характеризующие состояние технологического оборудования и протекание технологических процессов. Именно их чаще всего называют системами промышленной автоматизации.
Для выполнения диспетчерских функций (сбор и обработка данных о состоянии оборудования и технологических процессов) и разработки ПО для встроенного оборудования в состав АСУТП вводят систему SCADA (Supervisory Control and Data Acquisition). Непосредственное программное управление технологическим оборудованием осуществляют с помощью системы CNC (Computer Numerical Control) на базе контроллеров (специализированных компьютеров, называемых промышленными), которые встроены в технологическое оборудование.
В последнее время усилия многих компаний, производящих программно-аппаратные средства АС, направлены на создание систем электронного бизнеса (Е-Соттеrсе). Задачи, решаемые системами E-Commerce, сводятся не только к организации на сайтах Internet витрин товаров и услуг. Они объединяют в едином информационном пространстве запросы заказчиков и данные о возможностях множества организаций, специализирующихся на предоставлении различных услуг и выполнении тех или иных процедур и операций по проектированию, изготовлению, поставкам заказанных изделий. Такие системы E-Commerce называют системами управления данными в интегрированном информационном пространстве СРС (Collaborative Product Commerce) или PLM (Product Lifecycle Management). Проектирование непосредственно под заказ позволяет добиться наилучших параметров создаваемой продукции, а оптимальный выбор исполнителей и цепочек поставок ведет к минимизации времени и стоимости выполнения заказа. Характерная особенность СРС — обеспечение взаимодействия многих предприятий, т. е. технология СРС является основой, интегрирующей информационное пространство, в котором функционируют САПР, ERP, PDM, SCM, CRM и другие АС разных предприятий.
Структура САПР
Как и любая сложная система, САПР состоит из подсистем. Различают подсистемы проектирующие и обслуживающие.
Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах.
Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными, подсистемы разработки и сопровождения программного обеспечения CASE (Computer Aided Software Engineering), обучающие подсистемы для освоения пользователями технологий, реализованных в САПР.
Виды обеспечения САПР
Структурирование САПР по различным аспектам обусловливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения САПР [51]:
техническое (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);
математическое (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;
программное, представляемое компьютерными программами САПР;
информационное, состоящее из базы данных, СУБД, а также включающее другие данные, которые используются при проектировании; отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР, база данных вместе с СУБД носит название банка данных;
лингвистическое, выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;
методическое, включающее различные методики проектирования; иногда к нему относят также математическое обеспечение;
организационное, представляемое штатными расписаниями, должностными инструкциями и другими документами, которые регламентируют работу проектного предприятия.
Разновидности САПР
Классификацию САПР осуществляют по ряду признаков, например по приложению, целевому назначению, масштабам (комплексности решаемых задач), характеру базовой подсистемы — ядра САПР.
По приложениям наиболее представительными и широко используемыми являются следующие группы САПР:
САПР для применения в отраслях общего машиностроения. Их часто называют машиностроительными САПР или системами MCAD (Mechanical CAD);
САПР для радиоэлектроники: системы ECAD (Electronic CAD) или EDA (Electronic Design Automation);
САПР в области архитектуры и строительства.
Кроме того, известно большое число специализированных САПР, или выделяемых в указанных группах, или представляющих самостоятельную ветвь классификации. Примерами таких систем являются САПР больших интегральных схем (БИС); САПР летательных аппаратов; САПР электрических машин и т. п.
По целевому назначению различают САПР или подсистемы САПР, обеспечивающие разные аспекты (страты) проектирования. Так, в составе MCAD появляются рассмотренные выше CAE/CAD/CAM-системы.
По масштабам различают отдельные программно-методические комплексы (ПМК) САПР, например: комплекс анализа прочности механических изделий в соответствии с методом конечных элементов (МКЭ) или комплекс анализа электронных схем; системы ПМК; системы с уникальными архитектурами не только программного (software), но и технического (hardware) обеспечений.
По характеру базовой подсистемы различают следующие разновидности САПР:
1. САПР на базе подсистемы машинной графики и геометрического моделирования. Эти САПР ориентированы на приложения, где основной процедурой проектирования является конструирование, т. е. определение пространственных форм и взаимного расположения объектов. К этой группе систем относится большинство САПР в области машиностроения, построенных на базе графических ядер.
В настоящее время широко используют унифицированные графические ядра, применяемые более чем в одной САПР (ядра Parasolid фирмы EDS Urographies и ACIS фирмы Intergraph).
САПР на базе СУБД. Они ориентированы на приложения, в которых при сравнительно несложных математических расчетах перерабатывается большой объем данных. Такие САПР преимущественно встречаются в технико-экономических приложениях, например при проектировании бизнес-планов, но они имеются также при проектировании объектов, подобных щитам управления в системах автоматики.
САПР на базе конкретного прикладного пакета. Фактически это автономно используемые ПМК, например имитационного моделирования производственных процессов, расчета прочности по МКЭ, синтеза и анализа систем автоматического управления и т. п. Часто такие САПР относятся к системам САЕ. Примерами могут служить программы логического проектирования на базе языка VHDL, математические пакеты типа MathCAD.
Комплексные (интегрированные) САПР, состоящие из совокупности подсистем предыдущих видов. Характерными примерами комплексных САПР являются CAE/CAD/CAM-системы в машиностроении или САПР БИС. Так, САПР БИС включает в себя СУБД и подсистемы проектирования компонентов, принципиальных, логических и функциональных схем, топологии кристаллов, тестов для проверки годности изделий. Для управления столь сложными системами применяют специализированные системные среды.
Контрольные вопросы и упражнения
1. Дайте определение САПР.
2. Что является целью функционирования САПР?
3. Что включает полный комплект документации при неавтоматизированном проектировании?
4. Что включает полный комплект документации при автоматизированном проектировании?
5. Что является объектом проектирования?
6. Что является объектом автоматизации проектирования?
7. В чем заключается сущность функционирования САПР?
8. Каковы основные черты современных САПР?
9. Какие преимущества дает имитационное моделирование?
10. Перечислите принципы создания САПР.
11. В чем заключается принцип информационного единства САПР?
12. В чем заключается принцип совместимости САПР?
13. Что значит "открытая структура САПР"?
14. Что означает "принцип инвариантности САПР"?
15. Что включает в себя понятие "Жизненный цикл промышленных изделий"?
16. Перечислите разновидности САПР.
5. Лекция: Технические средства САПР и их развитие
Дата добавления: 2015-01-29; просмотров: 2138;