Глава 30. Элементы квантовой статистики

28.1. Свободная частица движется со скоростью и. Доказать, что выполняется соотношение .

28.2. Электрон движется в атоме водорода по первой боровской орбите. Принимая, что допускаемая неопределенность скорости составляет 1% от ее числового значения, определить неопределенность координаты электрона. Применительно ли в данном случае для электрона понятие траектории? [ = 33 нм; нет]

28.3. -Функция некоторой частицы имеет вид , где r — расстояние этой частицы от силового центра, а — постоянная. Определить среднее расстояние частицы от силового центра. [ = а/2]

28.4. Записать уравнение Шредингера для стационарных состояний электрона, находящегося в атоме водорода.

28.5. Электрон находится в одномерной прямоугольной «потенциальной яме» шириной l с бесконечно высокими «стенками». Определить вероятность W обнаружения электрона в средней трети «ямы», если электрон находится в возбужденном состоянии (n = 2). Пояснить физический смысл полученного результата, изобразив графически плотность вероятности обнаружения электрона в данном состоянии. [W = 0,195]

28.6. Прямоугольный потенциальный барьер имеет ширину 0,1 нм. Определить в электрон-вольтах разность энергий UE, при которой вероятность прохождения электрона сквозь барьер составит 0,99. [0,1 мэВ]

Глава 30. Элементы квантовой статистики








Дата добавления: 2015-01-21; просмотров: 1423;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.