Решение систем линейных алгебраических уравнений методом простых итераций.

Для применения этого метода приведем систему (4.1) к виду:

 

x1 = (a1,n+1- a 11 x 1- a 12 x 2-...- a 1n x n) / a 11+ x 1  
x2 = (a2,n+1- a 21 x 1- a 22 x 2-...- a 2n x n) / a 22+ x 2 (4.20)
. . . . . . . . . . . . . . . . . . . . . . . .  
xn = (an,n+1- a n1 x 1- a n2 x 2-...- a nn x n) / a nn+ x n  

Зададимся некоторым начальным приближением , , ... , и подставим его значения в правые части (4.20), и получим новое приближение , , ... , , которое подставим снова в систему (4.20) и т.д.

Таким образом организуется итерационный процесс, называемый методом простых итераций для систем алгебраических уравнений и являющийся обобщением метода простых итераций для алгебраических уравнений, рассмотренного в разделе 3:

 

 
  (4.21)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
  ,

где =(ai,n+1- a i1 x 1- a i2 x 2-...- a in x n) / a ii+ x i , i=1,2,...,n ; m - номер итерации.

Процесс (4.21) можно представить в несколько ином виде:

 
  (4.22)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
  ,

где =(ai,n+1- a i1 x 1- a i2 x 2-...- a in x n) / a ii , i=1,2,...,n ;

Значения или короче характеризуют разницу между m-м и (m+1)-м при­ближениями и образуют совокупность так называемых невязок (m+1)-го приближения.

Процесс (4.21) или (4.22) является бесконечным вычислительным процессом, каж­дая новая итерация которого дает все лучшее приближение к точному решению системы. В качестве критерия окончания обычно берется выполнение условия: “Все невязки по абсолютной величине меньше наперед заданного числа ”, харак­теризу­ющего точность решения системы, т.е.

< , i =1,2,...,n   (4.23)







Дата добавления: 2015-01-15; просмотров: 917;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.