Пород-коллекторов
Для терригенных коллекторовосновным показателем их класса служит гранулометрический состав, форма и характер поверхности слагающих породу зерен. Минеральный состав и структурно-текстурные особенности являются результатом динамики и физико-географической обстановки осадконакопления. Одновременно с заложением седиментационных структур и текстур терригенных пород происходит и формирование первичной (седиментационной) пористости.Структура - строение породы, обусловленное величиной, формой зерен, степенью цементации. Текстура - характер взаимного расположения компонентов породы и их пространственная ориентация. Поровое пространство является компонентом структурно-текстурного облика породы. Поры, сформированные на этапе седиментогенеза, называются первичными, или седиментационными. Пустотное пространство, образованное в постседиментационные стадии, считается вторичным, или эпигенетическим.
К петрографическим признакам, контролирующим первичную пористость, относятся:
· 1) размер зерен;
· 2) сортированность;
· 3) форма зерен (степень изометричности);
· 4) округленность зерен;
· 5) характер упаковки;
· 6) минеральный состав.
К петрографическим признакам, определяющим вторичную (эпигенетическую) пористость, относятся:
· 1) эпигенетические (наложенные) текстуры;
· 2) характеристика обломочных зерен: вторичные изменения (регенерация, растворение, перекристаллизация зерен), число контактов с соседними зернами, тип их сочленения (касательные, конформные, инкорпорационные и т. д.);
· 3) цемент: тип цементации (базальный, поровый, открыто-поро-вый, пленочный);
· 4) структура цемента (тонкозернистый, пойкилитовый, крустификационный и др.);
· 5) типы пористости, связанные с вторичным преобразованием цемента (поры выщелачивания, перекристаллизации, трещинные поры и др.).
Рассмотрим значение перечисленных факторов в формировании терригенной породы-коллектора.
Размер зерен. Теоретически пористость не зависит от размера зерен. Так, например, К. Слихтер (1899) указывал, что значения теоретической пористости не зависят от величины зерен, а изменяются только в зависимости от плотности их укладки. Это утверждение справедливо в том случае, когда зерна имеют идеальную сферическую форму и одинаковый размер. Если размер зерен породы различен, то более мелкие частицы занимают поровое пространство, образованное более крупными, с уменьшением величины пористости.
По экспериментальным данным в хорошо отсортированных песках пористость уменьшается с увеличением размера зерен. В ряде случаев, например для речных песков, наблюдается обратная зависимость (Селли, 1981). По-видимому, это обусловлено характером упаковки зерен, т.е. их текстурными признаками.
В. Энгельгардт (1964) приводит примеры значений пористости современных осадков Северного моря и Калифорнийского берега в зависимости от медианного размера зерен. Пробы взяты на глубинах моря от 3 до 30 м. Осадки Северного моря с медианным размером зерен 120 и 240 мкм имеют пористость, равную 40 и 44 %. Для калифорнийских песков с медианным диаметром зерен 200-700 мкм пористость составила от 38 до 45 %. При меньшем медианном диаметре зерен пористость осадков значительно возрастает.
Пористость песчаников, алевролитов и глин может быть одинакова, но неравноценна с точки зрения коллекторских свойств осадочных образований. Песчано-алевритовые породы будут являться коллекторами нефти и газа, тогда как глины при той же пористости практически непроницаемы.
Проницаемость увеличивается с увеличением размера зерен. В более тонкозернистых осадках каналы между порами тоньше, следовательно, и более высокое капиллярное воздействие.
Сортированность. Пористость увеличивается с ростом степени отсортированности зернистого материала. Проницаемость коллектора также возрастает с увеличением степени отсортированности породы. Объяснением этому, по-видимому, служит то, что более мелкие частицы (матрикс) закупоривают поровое пространство породы, а песчаный материал, складываясь в определенные упаковки, оставляет свободное емкостное пространство.
Форма и округленность. Угловатые, неправильной формы зерна могут укладываться или более плотно, или более рыхло, чем сферические. В связи с этим породы будут характеризоваться меньшей или большей пористостью по сравнению с породами, сложенными сферическими зернами. При наименьшей пористости зерна должны иметь угловатую форму и в укладке их должно быть соблюдено смещение поверхностей. В природных условиях довольно часто наблюдается сравнительно рыхлая укладка зерен, обладающих неправильной, угловатой формой, что отражается на величине пористости.
Г. Фразер (1935) изучал влияние формы зерен на пористость. Опыты показали, что при упаковке неокругленных зерен одинаковой размерности пористость больше, чем пористость при упаковке шарообразных зерен. Самая низкая пористость (35-38 %) получена в случае с шарами и шаровидными песчаными зернами. Более высокую пористость имеет смесь раздробленного кварца (41 %), зерен кальцита (41 %) и каменной соли (43 %). Наибольшая пористость получена при упаковке слюд пластинчатой формы (86 %).
В. Энгельгардт (1964) указывал, что пористость естественных песков тем больше, чем резче форма их зерен отличается от шарообразной. Принимая во внимание эти данные, следует понимать, что на-ряду со степенью сферичности и окатанности (угловатости) зерен необходимо учитывать степень сортированности осадка, тем более что частицы, имеющие угловатую форму, формируются в результате относительно короткого геологического времени, подвергаясь минимальной обработке, и в силу этих же причин, как правило, обладают низкой степенью сортированности. Наличие же мелких частиц наряду с крупными приводит к закупорке порового пространства и соответственно к формированию породы с низкими коллекторскими свойствами. Таким образом, форма зерен в сочетании с их величиной и степенью сортированности является важнейшим фактором, от которого зависит пористость терригенных пород.
Упаковка зерен. Теоретическая пористость агрегатов, составленных из сфер одинакового диаметра, в зависимости от укладки (ромбоэдрическая или кубическая) может колебаться от 26 до 48 %. Эти пределы хорошо согласуются с пределами пористости песков, большинство которых при естественном залегании имеет пористость от 30 до 50 %.
Минеральный состав. На фильтрационные параметры коллекторов существенное влияние оказывает помимо структурно-текстурных признаков минеральный состав как зерновой, так и цементирующей части породы.
Экспериментальные работы по изучению влияния минерального состава зерновых (аллотигенных) компонентов на проницаемость обломочных пород-коллекторов впервые осуществлены П. П. Авдусиным, В. П. Батуриным, З. В. Варовой в 1937 г. Было установлено, что лучшими фильтрационными свойствами обладают кварцевые пески вследствие низкой сорбционной способности кварца. Наличие трещин спайности и таблитчатый габитус большинства минералов, слагающих полимиктовые песчаники, а также более высокая их сорбционная емкость значительно снижают коэффициент фильтрации флюидов.
Среди факторов, влияющих на формирование порового пространства коллекторов, т.е. их коллекторского потенциала, существенная роль принадлежит глинистым минералам, присутствующим в виде примеси или цемента. Первичная пористость глинистых осадков значительно выше пористости песчаных. Пористость свежеотложенных тонких глинистых осадков превышает 80 % (Ханин, 1969). Наибольшую пористость имеет осадок, образующийся в воде, свободной от электролитов. Но высокая пористость глинистых осадков на стадии седиментогенеза не означает заложения хороших коллекторских свойств породы. Во-первых, в глинах преобладает закрытая или частично открытая пористость, во-вторых, большая часть пор заполнена водой, следовательно, эффективная пористость пород мала.
Степень влияния минерального состава глинистых примесей на коллекторские свойства пород тесно связана со строением их кристаллической решетки. Установлено, что максимально снижают проницаемость пород минералы монтмориллонитовой группы. Добавление 2 % монтмориллонита к крупнозернистому кварцевому песчанику снижает его проницаемость в 10 раз, а 5 % монтмориллонита - в 30 раз. Этот же кварцевый песчаник с примесью каолинита 15 % все еще сохраняет хорошую проницаемость.
На фильтрацию флюидов через коллектор влияет также форма выделения глинистого вещества в поровом пространстве коллектора. Если глинистый матрикс распределен равномерно, то влияние глинистого вещества тем сильнее, чем мельче зерна породы и хуже сортированность обломочного материала, т.е. сложнее структура порового пространства. При равномерном распределении глинистое вещество превращает первоначально крупные поры в мелкие, тупиковые, а сообщающиеся поры приобретают сложные очертания, что препятствует движению нефти по пласту. И чем больше глинистого вещества, тем больше усложняется конфигурация пор и затрудняется движение флюида по пласту.
Существенно влияет на уменьшение размера пор способность глинистых минералов к пластическим деформациям. При увеличении статистической нагрузки на коллектор с равномерно распределенным глинистым цементом глинистое вещество вследствие своей пластичности способно заполнить эффективные каналы, что может привести к полной потере породой емкостных и фильтрационных свойств. В этом случае коллектор становится покрышкой и может экранировать залежи нефти в нижележащих коллекторах.
Кроме глинистого вещества роль цемента в терригенных породах могут выполнять карбонатные минералы, соли, кремнезем и др.
Соли (гипс, ангидрит и пр.) ухудшают коллекторские свойства. Так, песчаники с базальным гипс-ангидритовым цементом являются практически флюидоупорами. Присутствие кремнистого цемента (опаловый, халцедоновый, кварцевый) также негативно сказывается на фильтрационно-емкостных свойствах пород. Но, учитывая высокую хрупкость кремнистых пород, при глубоком катагенетическом преобразовании породы могут приобрести вторичную трещинную пористость. Распространенным минеральным типом цемента в терригенных породах является карбонатное вещество, которое неоднозначно влияет на коллекторские свойства и подробно рассматривается ниже.
При петрографической характеристике породы важно указывать морфологию и размеры пустотного пространства (% от площади шлифа) и его генетическую приуроченность (например, седиментационная межзерновая пористость, поры выщелачивания в кальцитовом цементе, поры перекристаллизации цемента, микротрещины обломочных зерен и цементирующего вещества и др.) в соответствии со схемой описания, приведенной в разделе 2.1.
Таким образом, при характеристике петрографических признаков терригенных пород-коллекторов следует подробно характеризовать структуру (размер зерен, степень их окатанности, изометричности, сортированности); текстуру (характер укладки и ориентировки зерен); соотношение зерен и цемента в породе (в %); минеральный состав обломочных зерен и степень их измененности; минеральный состав цемента, а также морфологию и размеры пустотного простанства.
Дата добавления: 2015-03-11; просмотров: 1846;