Электромагниттік толқынның қасиеттері.

Электромагниттік толқындардың қасиеттерін толқын ұзындығы 3 см электромагниттік толқын шығаратын арнайы генераторды қолданып зерттейді. Аса жоғары жиілікті генератор қоздыратын электромагниттік толқын рупор түрінде таратқыш антеннада ось бағытымен шығарылады. Қабылдағыш антеннаныңпішіні дәл таратқыш антеныа сияқты. Қабылдағыш антеннада кристалдық диод орнатылған, ол антеннада қозатын жиілігі жоғары айнымалы токты бір полярлы толықсыма тоққа айналдырады.

Электромагниттік толқындардың шағылуы. Таратқыш және қабылдағыш рупорлардың арасына металл қаңылтыр қойылса, дыбыс естілмейді. Электромагниттік толқын металл қаңылтырдан өте алмай шағылады. Электромагниттік толкынның металл бетінен шағылуын түсіну оңай. Металға келіп түскен толқынның электр өрісінің әсерінен металл бетінде еркін электрондардың еріксіз тербелістері қозады. Осы еріксіз тербелістердің жиілігі электромагниттік толқынның жиілігіне тең. Бетке түскен электромагниттік толкынның энергиясы металдағы еркін электрондардың еріксіз тербелістерін қоздыруға жұмсалады. Толқын металдан өте алмайды, металл бетінің өзі екінші реттік толқын көзі болып табылады, яғни шағылады. Диэлектриктен толқынның шағылуы әлсіз, өйткені диэлектрикте электромагниттік толқынның әсерінен байланысқан электрондардың еріксіз тербелістері қозады. Бірақ олардың еріксіз тербелістерінің амплитудасы металдағы еркін электрондардың еріксіз тербелістерінің амплитудасынан анағұрлым кіші. Сондықтан толқынның диэлектриктен шағылуы нашар. Электромагниттік толқынның шағылу қасиеті радиобайланыс жүйесінде, радиолокадияда қолданылады.

Электромагниттік толқынның сынуы. Электромагниттік толқынның сынуын парафинмен толтырылған үшбұрышты призманы пайдаланып бақылауға болады. Қабылдаушы антенна толқынды тіркемейді. Енді диэлектрик болып табылатын парафиннен жасалған призманы суретте көрсетілгендей орналастырайык, антенна толқынды тіркейді. Демек, электромагниттік толкын екі ортаны бөліп тұрған ауа-парафин және парафин-ауа шекараларынан өткенде сынған. Элеқтромагниттік толқын бір ортадан екінші ортаға өткенінде сыну заңының орындалатынын зерттеулер көрсетті.

Электромагниттік толқынның жұтылуы. Рупорларды бір-біріне қарама-қарсы қойып, олардың арасына түрлі диэлектриктер, мысалы, фанера, плексиглас және т.б. қойсақ, толқынның жұтылатынын байқауға болады. Жұтылу дәрежесі түрлі диэлектриктер үшін әр түрлі.

Электромагниттік толқындардың поляризациясы. Электромагниттік толқынның және векторларының бір-біріне және толқынның таралу бағытына перпендикуляр болуы оның көлденең толқын екенін көрсетеді. Таратқыш антеннадан шығатын толқынның электр өрісінің кернеулік векторының тербелістері белгілі бір жазықтықта өтеді. Ал магнит индукциясының векторының тербелістері оған перпендикуляр жазықтықта жасалады. Өріс тербелістері бір бағытта өтетін электромагниттік толқындыполяризацияланған толқын деп атайды.

Поляризация латынның polus, гректің polos — полюс, осьтің шеті деген сөздерінен алынған. Толқын шығаратын антеннаның рупоры мен қабылдағыштың арасына металл шыбықтан жасалынған торларды (3.15-сурет) орналастырайық. Тордың екеуін де вертикаль не горизонталь бағыттай отырып, толқынның өтуін гальванометр арқылы тіркейді. Бұл жағдай электр өрісінің кернеулік векторы шыбықтарға перпендикуляр қалпында байқалады. Егер екінші торды 90°-қа бұрсақ, онда толқын шыбықтардан өтпейді. Демек, электромагниттік толқын — көлденең толқын. Электр өрісінің кернеулік векторы металл шыбықтарға параллель бағытталғанда, оларда еркін электрондардың еріксіз тербелістері қозады да толқын шағылады. Кернеулік векторы шыбықтарға перпендикуляр бағытталғанда, еркін электрондардың еріксіз тербелістері көлденең болғандықт

ан, олардың амплитудасы мардымсыз. Электромагниттік толқын шағылмай өтеді. Айта кету керек, егер электромагниттік толқын көлденең емес, құма толқын болса, онда тордың кез келген қалпында ол шыбықтардан өтіп кетер еді. Пәтерлердегі теледидар антеннасын орнатқанда электромагниттік толқынның поляризацияланғаньш ескеру қажет. Антеннада қозатын индукциялық токтың амплитудасы максимал болады, егер кернеулік векторы антеннаға параллель қалпын сақтаса.

Электромагниттік толқындардың интерференциясы. Кеңістікте екі немесе бірнеше таратқыш антеннадан таралған электромагниттік толқындар бір-бірімен қабаттасады. Жиіліктері бірдей екі толқын қосылғанда қорытқы толқын амплитудасының арту немесе кему құбылысын толқындардың интерференциясы дейді. Бірдей фазамен тербелетін екі электромагниттік толқын кеңістіктің бір нүктесіне келіп жеткенде

шарты орындалса, интерференция нәтижесінде қорытқы тербеліс амплитудасы максимал болады. Мұндағы толқындардың жол айырымы, k = 0, 1, 2, 3,... .

тақ санды жартытолқынға тең болса, онда интерференцияның минимум шарты орындалады. Қорытқы тербеліс сол нүктеде минимал болады.Электромагниттік толқындардың интерференциясын бақылау үшін таратқыш пен қабылдағыштың рупорларын қарама-қарсы орналастырып, горизонталь бағыттағы металл қаңылтырды жоғарыдан төмен қозғалтайық. Сонда дыбыстық біресе күшейіп, біресе бәсеңдегенін байқаймыз. Рупордан шығатын толқынның біраз бөлігі қабылдағыш антеннаға түседі. Қалған бөлігі металл бетінен шағылып барып түседі. Металл қаңылтырды жоғары немесе төмен қозғалта отырып, тура толқын мен шағылған толқынның жол айырымын өзгертеміз. Интерференцияның максимум немесе минимум шарттарының қайсысы орындалатынына байланысты, дыбыс не күшейеді, не әлсірейді.

Электромагниттік толқындардың дифракциясы. Толқындардың түзусызықты таралуынан ауытқуын, бөгеттерді орағытып өтуін толқынныц дифракциясы деп атайды. Толқын жолындағы бөгеттердің өлшемдері толқын ұзындығынан кіші немесе онымен шамалас болған жағдайларда толқын дифракциясы айқын байқалады. Аса жоғары жиілікті генератор мен қабылдағыштың арасында жіңішке саңылауы бар металл экран тұр. Қабылдағыштың орнын ауыстыра отырып, тербеліс амплитудасының максимумдары мен минимумдары кезек ауысатынын көреміз.

 

5. Энергия ағынының тығыздығы. Энергия (гр. energeіa – әсер, әрекет) – материя қозғалысының әр түрлі формасының жалпы өлшеуіші. Материя қозғалысының әр түрлі формалары бір-біріне айналып (түрленіп) отырады. 19 ғасырдың орта шенінде осы қозғалыстың барлық формалары бір-біріне белгілі бір сандық мөлшерде ғана айтылатындығы анықталды; осы жағдай “энергия” ұғымын енгізуге, яғни қозғалыстың әр түрлі физикалық формаларын бірыңғай өлшеуішпен өлшеуге мүмкіндік берді. “ Энергия” ұғымы сақталу заңына бағынады (қ. Энергияның сақталу заңы, Термодинамика). Энергия туралы түсінік мәңгілік қозғалтқыш жасаудың мүмкін еместігін дәлелдеуге байланысты пайда болды. Жұмыстың қоршаған ортадағы немесе жүйедегі белгілі бір өзгерістің (отынның жануы, судың құлауы, т.б.) нәтижесінде ғана орындалатындығы анықталды; дененің бір күйден басқа бір күйге ауысуы кезіндегі белгілі бір жұмыс істеу қабілеті оның энергиясы деп аталды.

Қозғалыстың әр түрлі формасына сәйкес энергияның да бірнеше түрі бар (мысалы, механикалық энергия, химиялық энергия, электромагниттік энергия, гравитациялық энергия, ядролық энергия, т.б.) Физиканың даму процесінде энергия ұғымы нақтыланып әрі жалпыланып отырды. Энергия туралы ілімнің дамуындағы маңызды бір кезең үздіксіз ортадағы энергия қозғалысы мен “ энергия ағыны” туралы ұғымның енгізілуі болды. Энергия ағыны деп энергия тығыздығы мен берілген ортадағы орын ауыстыру жылдамдығының көбейтіндісіне тең векторды айтады.

Кванттық физиканың дамуы энергия ның квантталатындығы жайлы, яғни кейбір жағдайда жүйенің энергия сы тек дискретті (үздікті) мәндерді ғана қабылдайды деген фактіні дәлелдеуге мүмкіндік берді. Мұндай жағдай мысалы, сәуле шығару энергия сына, микробөлшектердің тербеліс және айналу Энергиясына қатысты айтылады. Салыстырмалық теориясында Энергия (Е) мен масса (m) арасындағы байланыстың (Е=mс2, мұндағы с – вакуумдегі жарық жылдамдығы) ашылуы физика үшін зор маңызды болды. Бұл қатыс әмбебаб қатыс болып есептеледі. Сондықтан ол тіпті өте кішкентай микробөлшектің өзінде де әрқашан қозғалыстың белгілі бір түрі болатындығын көрсетеді. Мұндай қозғалыстың өлшеуіші mс2 өрнегі болады. Әсіресе бұл қатыстың ядр. энергетиканың дамуына байланысты іс жүзіндегі маңызы арта түсті. Энергия бірліктердің халықаралық жүйесінде (СИ) джоульмен, бірліктердің СГСжүйесінде эргпен өлшенеді. Ал ядролық және атомдық физикада энергияның өлшеу бірлігі ретінде электронвольт алынады. Энергия екіге бөлінеді: потенциалдық және кинетикалық энергия. Потенциалдық энергия денелердің немесе дене бөліктерінің өзара алмасуынан пайда болады. Кинетикалық энергия дене қозғалысқа түскенде пайда болады.

 








Дата добавления: 2014-12-04; просмотров: 7608;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.