Общие сведения о литосфере

 

 

Мантия Земли-оболочка «твёрдой» Земли, расположенная между земной корой и ядром Земли. Занимает 83 % Земли (без атмосферы) по объёму и 67 % по массе.

От земной коры её отделяет Мохоровичича поверхность, на которой скорость продольных сейсмических волн при переходе из коры в мантию земли возрастает скачком с 6,7—7,6 до 7,9—8,2 км/сек; от ядра Земли мантию отделяет поверхность (на глубине около 2900 км), на которой скорость сейсмических волн падает с 13,6 до 8,1 км/сек. Мантия Земли делится на нижнюю и верхнюю мантию. Последняя, в свою очередь, делится (сверху вниз) на субстрат, слой Гутенберга (слой пониженных скоростей сейсмических волн) и слой Голицына (иногда называется средней мантией). У подошвы мантия Земли выделяется слой толщиной менее 100 км, в котором скорости сейсмических волн не растут с глубиной или даже слегка понижаются.

Предполагается, что мантия Земли слагается теми химическими элементами, которые во время образования Земли находились в твёрдом состоянии или входили в состав твёрдых химических соединений. Из этих элементов преобладают: О, Si, Mg, Fe. Согласно современным представлениям, состав мантии Земли считается близким к составу каменных метеоритов. Из каменных метеоритов наиболее близкий к мантия Земли состав имеют хондриты. Предполагают, что непосредственными образцами вещества мантии являются обломки пород среди базальтовой лавы, вынесенные на поверхность Земли; их находят также вместе с алмазами в трубках взрыва. Считают также, что обломки пород, поднятые драгой со дна рифтов Срединно-океанических хребтов, представляют собой вещество мантии.

Характерной чертой мантия Земли являются, по-видимому, фазовые переходы. Экспериментально установлено, что в оливине под большим давлением изменяется структура кристаллической решётки, появляется более плотная упаковка атомов, так что объём минерала заметно уменьшается. В кварце такой фазовый переход наблюдается дважды по мере роста давления; самая плотная модификация на 65 °C плотнее обычного кварца. Такие фазовые переходы считаются главной причиной того, что в слое Голицына скорости сейсмических волн очень быстро возрастают с глубиной.

Верхняя мантияодна из оболочек земного шара, непосредственно подстилающая земную кору. Отделена от последней Мохоровичича поверхностью, находящейся под материками на глубине от 20 до 80 км (в среднем 35 км) и под океанами на глубине 11—15 км от поверхности воды. Скорость распространения сейсмических волн (используемая в качестве косвенного метода изучения внутреннего строения Земли) возрастает при переходе от земной коры к верхней мантиискачкообразно приблизительно с 7 до 8 км/сек.Верхняя мантияпредполагается на глубине 900 км (при делении мантии на верхнюю и нижнюю) и на глубине 400 км (при делении её на верхнюю, среднюю и нижнюю). Зона в пределах глубин 400—900 км называется Голицына слоем. Верхняя мантиясложена, вероятно, гранатовыми перидотитами с примесью в верхней части Эклогита.

Эклогит — метаморфическая горная порода состоящая из пироксена с высоким содержанием кварца и рутила (минерал, содержащий примесь железа, олова, ниобия и тантала ТіО2 - 60 % титана и 40 % кислорода).

Важная особенность строения верхней мантии-наличие зоны пониженных скоростей сейсмических волн. Имеются различия в строении верхней мантиипод разными тектоническими зонами, например под геосинклиналями и платформами. В верхней мантии развиваются процессы, являющиеся источником тектонических, магматических и метаморфических явлений в земной коре. Во многих тектонических гипотезах верхней мантии отводится важная роль; например, предполагается, что земная кора образовалась путём выплавления из вещества верхней мантии,что тектонические движения связаны с движениями в верхней мантии и др. Образцы самой верхней части мантии Земли состоят преимущественно из пород ультраосновного (перидотит и пироксенит) и основного (эклогит) состава. Обычно считается, что мантия Земли почти полностью сложена оливином [(Mg, Fe)2SiO4], в котором сильно преобладает магниевая компонента (форстерит), но с глубиной, быть может, возрастает доля железной составной части (фаялита). Австралийский петрограф Рингвуд предполагает, что мантия Земли сложена гипотетической породой, которую он назвал пиролитом и которая по составу соответствует смеси из 3 частей периодита и 1 части базальта. Теоретические расчёты показывают, что в нижней мантии Земли минералы должны распадаться на окислы. К началу 70-х годов 20 века появились также данные, указывающие на наличие в мантии Земли горизонтальных неоднородностей.

Несомненно, что земная кора выделилась из мантии Земли; процесс дифференциации мантия Земли продолжается и сейчас. Есть предположение, что и земное ядро разрастается за счёт мантии Земли. Процессы в земной коре и мантия Земли тесно связаны; в частности, энергия для тектонических движений земной коры, по-видимому, поступает из мантии Земли.

Нижняя мантия Земли - составная часть мантии Земли, распространяющаяся от глубин 660 (граница с верхней мантией) до 2900 км. Расчетное давление в нижней мантии составляет 24-136 ГПа и вещество нижней мантии недоступно для прямого изучения.

В нижней мантии существует слой (слой D), в которой скорость сейсмических волн аномально низка и имеет горизонтальные и вертикальные неоднородности. Предполагается, что он образован восходящим проникновением Fe и Ni в силикаты, которые расплавляются этими потоками. Это чрезвычайно важно, так как некоторые исследователи полагают, что части субдукционной плиты накапливаются на 660 км от границы, и они становятся экспоненциально более тяжелыми и опускаются на ядро и накапливаются в слое D.

Земная кора- самая верхняя из твёрдых оболочек Земли. Нижней границей земной коры считается поверхность раздела, при прохождении которой сверху вниз продольные сейсмические волны скачком увеличивают скорость с 6,7—7,6 км/сек до 7,9—8,2 км/сек (см. Мохоровичича поверхность). Это служит признаком смены менее упругого материала более упругим и более плотным. Слой верхней мантии, подстилающий земной коры, часто называется субстратом. Вместе с земной коры он составляет литосферу. Земная кора различна на материках и под океаном. Материковая земная кора обычно имеет толщину 35—45 км, в областях горных стран - до 70 км. Верхнюю часть материковой земной коры составляет прерывистый осадочный слой, состоящий из разновозрастных неизмененных или слабоизменённых осадочных и вулканических горных пород. Слои нередко смяты в складки, разорваны и смещены по разрыву. В некоторых местах (на щитах) осадочная оболочка отсутствует. Вся остальная толща материковой земной коры разделяется по скоростям сейсмических волн на 2 части с условными названиями: для верхней части — «гранитный» слой (скорость продольных волн до 6,4 км/сек), для нижней —«базальтовый» слой (6,4—7,6 км/сек). По-видимому, «гранитный» слой сложен гранитами и гнейсами, а «базальтовый» слой — базальтами, Габбро и очень сильно метаморфизованными осадочными породами в различных соотношениях. Эти 2 слоя часто разделены Конрада поверхностью, при переходе которой скорости сейсмических волн возрастают скачком. По-видимому, в земной коре с глубиной уменьшается содержание кремнезёма и возрастает содержание окислов железа и магния; ещё в большей степени это имеет место при переходе от земной коры к субстрату.

Океаническая земная кора имеет толщину 5—10 км (вместе с толщей воды — 9—12 км). Она разделяется на три слоя: под тонким (менее 1 км) слоем морских осадков лежит «второй» слой со скоростями продольных сейсмических волн 4—6 км/сек; его толщина 1—2,5 км. Вероятно, он сложен серпентинитом и базальтом, быть может, с прослоями осадков. Нижний, «океанический», слой толщиной в среднем около 5 км имеет скорости прохождения сейсмических волн 6,4—7,0 км/сек; вероятно, он сложен габбро. Толщина слоя осадков на дне океана изменчива, местами их нет совсем. В переходной зоне от материка к океану наблюдается земная кора промежуточного типа.

Земная кора подвержена постоянным движениям и изменениям. В её необратимом развитии подвижные области - геосинклинали - превращаются путём длительных преобразований в относительно спокойные области – платформы. Существует ряд тектонических гипотез, объясняющих процесс развития геосинклиналей и платформ, материков и океанов и причины развития земной коры в целом. Несомненно, что главные причины развития земной коры лежат в более глубоких недрах Земли; поэтому изучение взаимодействия земной коры и верхней мантии представляет особенный интерес.

Земная кора близка к состоянию изостазии (равновесию): чем тяжелее, т. е. толще или плотнее какой-либо участок земной коры, тем глубже он погружен в субстрат. Тектонические силы нарушают изостазию, но когда они слабеют, земной коры возвращается к равновесию.

 

Рисунок 25 - Земная кора

Ядро Земли - центральная геосфера радиусом около 3470 км. Существование ядра Земли установлено в 1897 немецким сейсмологом Э. Вихертом, глубина залегания (2900 км) определена в 1910 американским геофизиком Б. Гутенбергом. О составе ядра Земли и его происхождении единого мнения нет. Возможно, оно состоит из железа (с примесью никеля, серы, кремния или других элементов) или его окислов, которые под действием высокого давления приобретают металлические свойства. Существуют мнения, что ядро образовалось путём гравитационной дифференциации первичной Земли в период её роста или позже (впервые высказано норвежским геофизиком В. М. Гольдшмидтом в 1922) либо железное ядро возникло ещё в протопланетном облаке (немецкий учёный А. Эйкен, 1944, американский учёный Э. Орован и советский учёный А. П. Виноградов, 60—70-е гг.).

Мохоровичича поверхность - граница раздела между земной корой и мантией Земли .Мохоровичича поверхность установлена по сейсмическим данным: скорость продольных сейсмических волн при переходе (сверху вниз) через Мохоровичича поверхность возрастает скачком с 6,7—7,6 до 7,9—8,2 км/сек, а поперечных — с 3,6—4,2 до 4,4—4,7 км/сек. Различные геофизические, геологические и др. данные указывают на то, что плотность вещества тоже возрастает скачком, предположительно, с 2,9—3 до 3,1—3,5 т/м3. Наиболее вероятно, что Мохоровичича поверхность разделяет слои разного химического состава. Мохоровичича поверхность названа по имени открывшего её А. Мохоровичича.

Из первых трех геосфер ведущая роль, несомненно, принадлежит земной коре, так как её общая масса многократно превосходит суммарную массу двух других оболочек. Поэтому данные об относительном содержании того или иного химического элемента в земной коре можно в значительной мере считать и отражающими его содержание в биосфере в целом.

Наружная твердая оболочка Земли - земная кора более чем на 99% сложена всего 9 основными элементами: O (47%), Si (29,5%), Al (8,05%), Fe (4,65%), Ca (2,96%), Na (2,50%), K (2,50%), Mg (1.87%), Ti (0,45%). В сумме – 99, 48%. Из них кислород является абсолютно преобладающим. Наглядно видно, сколько остаётся на все остальные элементы. Это – по массе, т.е в весовых процентах.

Есть и другой вариант оценки – по объёму (объёмные проценты). Вычисляется с учётом размеров атомных и ионных радиусов в конкретных минеральных соединениях, образуемых этими элементами. Содержания в земной коре наиболее распространённых элементов в объёмных процентах составляют (по В.М. Гольдшмидту): O – 93,77%, K – 2,14%, Na – 1,60%, Ca – 1,48%, Si – 0,86%, Al – 0,76%, Fe – 0,68%, Mg – 0,56%, Ti – 0,22%.

Очевидны достаточно существенные различия в распределении атомов химических элементов по весу и объему: в резком понижении относительного содержания Al и особенно Si (из-за малых размеров их атомов, а для кремния – в ещё большей мере ионов в его кислородных соединениях) ещё более явно подчеркивается ведущая роль кислорода в литосфере.

При этом выявлены «аномалии» в содержаниях некоторых элементов в литосфере:

«провал» в содержаниях наиболее лёгких элементов (Li, Be, B) – объясняется особенностями процесса нуклеосинтеза (преимущественное образование углерода в результате соединения сразу трёх ядер гелия); относительно высокие содержания элементов, являющихся продуктами радиоактивного распада (Pb, Bi, а также Ar среди инертных газов).

В условиях Земли аномально низки содержания еще двух элементов: H и He. Это связано с их «летучестью». Оба эти элемента – газы, и, к тому же, самые легкие. Поэтому атомарные водород и гелий имеют тенденцию перемещаться в верхние слои атмосферы, а оттуда, не удерживаясь земным тяготением, рассеиваются в космическом пространстве. Водород до сих пор не потерян полностью, так как большая его часть входит в состав химических соединений – воды, гидрооксидов, гидрокарбонатов, гидросиликатов, органических соединений и др. А гелий, являющийся инертным газом, постоянно образуется как продукт радиоактивного распада тяжелых атомов.

Таким образом, земная кора по существу является упаковкой анионов кислорода, связанных друг с другом кремнием и ионами металлов, т.е. она состоит почти исключительно из кислородных соединений, преимущественно, из силикатов алюминия, кальция, магния, натрия, калия и железа. При этом, как Вы уже знаете, в составе литосферы 86,5% приходится на чётные элементы.

Наиболее распространенные элементы принято называть макроэлементами.

Элементы же, содержание которых составляет сотые доли процента и менее называются микроэлементами. Понятие это относительное, так как конкретный элемент может быть микроэлементом в одной среде, а в другой относиться к основным, т.е. макроэлементам (Например, Al в организмах –микроэлемент, а в литосфере - макроэлемент, железо в почвах – макроэлемент, а в живых организмах - микроэлемент).

Для обозначения величины содержания конкретного элемента в той или иной среде используется понятие «кларк». Этот термин связан с именем Ф.У. Кларка – американского геохимика, впервые предпринявшего на базе обширного аналитического материала вычисление средних содержаний химических элементов в различных типах горных пород и в литосфере в целом. В память о его вкладе А.Е. Ферсман в 1924 г. предложил именовать среднее содержание любого конкретного элемента в определённой вещественной среде кларком этого химического элемента. Единица измерения кларка – г/т (т.к. при низких величинах кларков многих элементов использовать процентные значения неудобно).

Наиболее сложной задачей является определение кларков для литосферы в целом, так как её строение очень.

Внутри горных пород деление силикатов производится на кислые и основные.

В кислых относительно повышены концентрации Li, Be, Rb, TR, Ba, Tl, Th, U, Ta.

В основных – Cr, Sc, Ni, V, Co, Pt.

Приведем порядок кларков различных элементов по В.Ф. Барабанову:

- Более 10 000 г/т - O, Si, Al, Fe, Ca, Mg, Na, K.

- 1000-10 000 - Mn, Ti.

- 100-1000 - C, F, P, S, Cl, Rb, Sr, Zr, Ba.

-10-100 - Pb, Th, Y, Nb, La, Ce, Nd, Li, B, N, Sc, V, Cr, Co, Ni, Cu, Zn, Ga.

- 1-10 - Eu, Dy, Ho, Er, Yb, Hf, Ta, W, Tl, U, Ge, As, Br, Mo, Sn, Sc, Pm, Sm, Be.

- 0,1-1,0 - Cd, Bi, In, Tu, I, Sb, Lu.

- 0,01-0,1 - Ar, Se, Ag, Hg.

- 0,001-0,01 - Re, Os, Ir, Ru, Rh, Pd, Te, Pt, He, Au.

По этой градации элементы, имеющие кларки выше 1000 г/т будут относиться к макроэлементам. Те, у которых кларки ниже – микроэлементы.

Учёт кларков безусловно необходим для правильного понимания закономерностей процессов миграции химических элементов. Различная распространённость элементов в природе имеет неизбежным следствием для многих из них наличие существенных различий в их поведении в лабораторных условиях и в природе. С уменьшением кларка снижается активная концентрация элемента, становится невозможным выпадение самостоятельной твёрдой фазы из водных растворов и других способов образования самостоятельных минеральных видов. Поэтому способность к самостоятельному минералообразованию зависит не только от химических свойств элемента, но и от его кларка.

Примеры: S и Se – химически полные аналоги, а их поведение в природных процессах различно. S – ведущий элемент многих природных процессов. Сероводород играет большую роль в химических процессах, происходящих в донных осадках и в глубинах земной коры, в формировании месторождений ряда металлов. Сера формирует самостоятельные минералы (сульфиды, сульфаты). Селеноводород существенной роли в природных процессах не играет. Селен находится в рассеянном состоянии как примесь в минералах, образуемых другими элементами. Аналогичны различия К и Cs, Si и Ge.

Одно из важнейших отличий геохимии от химии в том, что геохимия рассматривает только те химические взаимодействия, которые реализуются в конкретных природных условиях. Кроме того - учёт кларков (по крайней мере их порядков) в этом смысле является первоочередным требованием при любых геохимических построениях.

Существуют, и даже достаточно распространены самостоятельные минеральные фазы целого ряда элементов с низкими кларками. Причина в том, что в природе существуют механизмы, позволяющие обеспечивать формирование повышенных концентраций тех или иных элементов, в результате чего их содержание в каких-то участках могут многократно превышать кларковые. Поэтому кроме кларка элемента нужно учитывать и величину его концентрации в сравнении с кларковым содержанием.

Кларк концентрации – это соотношение содержания химического элемента в данном конкретном природном вещественном агрегате (горной породе и т.п.) к его кларку.

Примеры коэффициентов концентрации некоторых химических элементов в их рудных месторождениях: Al – 3,7; Mn – 350; Cu – 140; Sn – 250; Zn – 500; Au – 2000.

На этом основании элементы с низкими кларками подразделяются на две уже известные вам качественно различные группы. Те, для распределения которых не характерны высокие значениями КК, называются рассеянными (Rb, Ga, Re, Cd и др.). Способные формировать повышенные концентрации с высокими значениями КК – редкими (Sn, Be и др.).

Различиями в достигаемых величинах КК обусловлена разная роль тех или иных элементов в истории материально-технической деятельности человечества (с древности известные металлы с низкими кларками Au, Cu, Sn, Pb, Hg, Ag … - и более распространённые Al, Zr…).

Большую роль в процессах концентрации и рассеяния элементов в земной коре играет изоморфизм - свойство элементов замещать друг друга в структуре минерала. Изоморфизм – это способность близких по свойствам химических элементов замещать друг друга в переменных количествах в кристаллических решётках. Конечно, она свойственна не только микроэлементам. Но именно для них, в особенности для элементов рассеянных, она приобретает ведущее значение как основной фактор закономерности их распределения. Различают изоморфизм совершенный – когда взаимозаменяемые элементы могут замещать друг друга в любых соотношениях (ограничиваясь только соотношениями содержаний этих элементов в системе), и несовершенный – когда замещение возможно только до определённых пределов. Естественно, что чем ближе химические свойства, тем совершеннее изоморфизм.

Различают изоморфизм изовалентный и гетеровалентный.

Общность типа химической связи – то, что химики называют степенью ионности – ковалентности. Пример: хлориды и сульфиды – не изоморфны, а сульфаты с манганатами – изоморфны.

Механизм изовалентного изоморфизма. Однотипность химической формулы образуемых соединений и формируемой кристаллической решётки. То есть, если рубидий потенциально способен формировать соединения с теми же элементами, что и калий, и кристаллическая структура таких соединений однотипна, то атомы рубидия способны замещать атомы калия в его соединениях.

Подразделение химических элементов на макро- и микроэлементы, а последних – на редкие и рассеянные имеет большое значение, так как в природе далеко не все химические элементы образуют самостоятельные соединения. Это присуще главным образом элементам с высокими кларками, или с низкими, но способным локально формировать высокие концентрации (то есть редким).

Нахождение в природе в рассеянном состоянии и повсеместно (только в различных концентрациях) – это свойство всех химических элементов. Этот факт впервые констатировал В.И. Вернадский, и он получил название закона рассеяния химических элементов Вернадского. Но часть элементов способна кроме рассеянной формы нахождения присутствовать в природе и в другой форме – в форме химических соединений. А элементы с низкими концентрациями присутствуют только в рассеянной форме.

Механизм гетеровалентного изоморфизма несколько более сложен. Впервые на наличие такого типа изоморфизма обратил внимание в конце XIX в. Г. Чермак. Он доказал, что очень сложные химические формулы, получаемые для большинства минеральных соединений класса силикатов, являются таковыми именно по причине гетеровалентного изоморфизма, когда взаимно замещают друг друга целые группы атомов. Такой тип изоморфизма очень характерен именно для силикатных соединений.

Другими вариантами нахождения рассеянных атомов элементов в земной коре являются их локализация в дефектах кристаллической решетки, в её полостях, а также - в сорбированном состоянии на поверхности других частиц, в том числе, и коллоидных.

 








Дата добавления: 2014-12-27; просмотров: 2362;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.017 сек.