Мультивибраторы

Еще одной распространённой схемой генераторов на логических элементах является схема мультивибратора. В этой схеме для реализации положительной обратной связи используется два инвертора. Каждый из усилителей осуществляет поворот фазы генерируемого сигнала на 180°. В результате реализуется баланс фаз. Схема мультивибратора приведена на рисунке 3.1.


Рисунок 3.1. Схема мультивибратора, выполненная на двух логических инверторах.

Коэффициент усиления каждого из усилителей определяется соотношением резисторов R2/R1 и R4/R3. В этой схеме возможна независимая регулировка частоты и скважности генерируемых колебаний. Длительность импульсов и длительность паузы между импульсами регулируется независимо при помощи RC цепочек R1 C2 и R3 C1. Период следования импульсов Т определяется как сумма двух времен заряда конденсаторов:

Т = tзар1 + tзар2,

где tзар1 = R2C2 ln(U1/Uпор);
tзар2 = R4C1 ln(U1/Uпор).

Если скважность генерируемых колебаний не важна, то можно упростить схему мультивибратора, использовав второй инвертор по прямому назначению. Так как при реализации схемы генератора нас интересует максимальный петлевой коэффициент усиления, то последовательный резистор мы тоже можем исключить. Для обеспечения автоматического запуска генератора в схеме остается резистор, включенный с выхода на вход первого инвертора. В этом случае схема мультивибратора примет вид, показанный на рисунке 3.2.


Рисунок 3.2. Упрощённая схема мультивибратора.

В этой схеме возможно задавать только частоту генерируемых импульсов. Она будет определяться произведением R1 C1. Скважность генерируемых импульсов будет зависеть от соотношения токов нуля и единицы выбранного логического элемента.

Период Т импульсов, вырабатываемых мультивибратором, определяется в первом приближении постоянной времени t = RC (Т = а*t, где а обычно имеет значение 1...2). Частоту следования импульсов можно оценить (с точностью до 10 %) из выражения f = 1/2RC.

Достаточно часто требуется получить генератор, выходная частота которого могла бы изменяться в достаточно широких пределах. В этом случае в качестве частотозадающего элемента в генераторе может быть использован элемент с изменяемыми параметрами, например варикап или полевой транзистор. Схема такого генератора, управляемого напряжением, приведена на рисунке 3.3.


Рисунок 3.3. Схема генератора, управляемого напряжением.

Учитывая, что сопротивление полевого транзистора может изменяться в пределах от 10 Ом до 10 МОм, генерируемая частота тоже может изменяться в десятки и сотни раз. Однако следует учесть, что такой генератор может быть использован только в цифровых схемах, так как его спектральные характеристики оставляют желать лучшего. Обычно такая схема используется в цепях умножения частоты внутри цифровых микросхем повышенной производительности. Примером специализированных микросхем - генераторов могут служить микросхемы 531ГГ1 и 564ГГ1.

В схеме на мультивибраторе можно использовать и кварцевую стабилизацию частоты. Для этого нужно кварцевый резонатор включить в цепь обратной связи. Схема мультивибратора с кварцевой стабилизацией частоты приведена на рисунке 3.4.


Рисунок 3.4. Схема мультивибратора с кварцевой стабилизацией частоты.

При применении такой схемы кварцевого генератора следует учитывать, что кварцевый резонатор в ней работает на частоте последовательного резонанса, которая отличается от частоты параллельного резонанса, используемого в осцилляторной схеме генератора.

 

 








Дата добавления: 2014-12-24; просмотров: 1179;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.