Морфолого-анатомическая характеристика клубеньков в их онтогенезе.

По способу образования клубеньки бобовых растений подразделяются на два типа:

1-й тип - клубеньки возникают при делении клеток перицикла (корнеродного слоя), обычно расположенных против протоксилемы (первых по времени образования сосудов) - эндогенный тип образования клубеньков;

2-й тип - клубеньки происходят из коры корня в результате внедрения возбудителя в паренхимные клетки коры и эндодермы (внутреннего слоя первичной коры) - экзогенный тип образования клубеньков.

В природе преобладает последний тип. Ткани центрального цилиндра корня принимают участие только в образовании сосудистой системы клубеньков как эндогенного, так и экзогенного типа.

Несмотря на различные взгляды на природу возникновения клубеньков зкзо- и эндотипов, процесс развития их в основном одинаков. Однако ни тот, ни другой тип образования клубеньков ни в коем случае не следует отождествлять с процессом образования боковых корней, несмотря на то что существуют и отдельные черты сходства в их заложении. Так, формирование клубеньков и боковых корней происходит одновременно и к тому же в одной и той же зоне корня.

В то же время ряд особенностей развития боковых корней и клубеньков подчеркивает глубокие различия в типе их формирования. Боковые корни возникают в перицикле. С первых же моментов развития они связаны с центральным цилиндром главного корня, от которого ответвляются центральные цилиндры боковых корней,и возникают они всегда против луча первичной древесины. Формирование клубенька, в отличие от бокового корня, возможно в любом месте. В самом начале формирования клубеньковой ткани сосудистой связи с центральным цилиндром корня нет, она возникает позднее. Сосуды обычно формируются по периферии клубенька. Они связаны с сосудами корня через зону трахеид и имеют собственную эндодерму (рис. 152).

Различие в характере возникновения клубеньков и боковых корней особенно четко наблюдается у сераделлы, поскольку коровая ткань главного корня этого растения - место возникновения первых клубеньков - состоит из относительно небольшого слоя клеток и клубеньки становятся видимыми очень быстро после инфицирования корня бактериями. Они образуют сначала выступы уплощенной формы на корне, что позволяет отличить их от конических выступов боковых корней. Клубеньки отличаются от боковых корней и рядом анатомических признаков: отсутствием центрального цилиндра, корневых чехликов и эпидермиса, наличием значительного слоя коры, покрывающей клубенек.

Формирование клубеньков (рис. 153, 1, 2) бобовых растений происходит в период, когда корень имеет еще первичную структуру. Оно начинается с деления коровых клеток, расположенных на расстоянии 2-3 слоев от концов инфекционных нитей. Слои коры, пронизанные инфекционными нитями, остаются без изменения. В то же время у сераделлы деление коровых клеток возникает непосредственно под инфицированным корневым волоском, а у гороха деление клеток отмечается только в предпоследнем слое коры.

Деление с образованием радиальной структуры ткани продолжается до внутренних коровых клеток. Происходит оно без определенного направления, беспорядочно, и в результате этого возникает меристема (система образовательных тканей) клубенька, состоящая из мелких зернистых клеток.

Разделившиеся клетки коры изменяются: ядра округляются и увеличиваются в размерах, особенно увеличиваются ядрышки. После митоза ядра расходятся и, не принимая первоначальной формы, вновь начинают делиться.

Возникает вторичная меристема. Вскоре в эндодерме и перицикле появляются признаки начинающегося деления, которое в прежних внешних клетках происходит главным образом тангентальными перегородками. Это деление распространяется, наконец, на общий меристематический комплекс, мелкие клетки которого вытягиваются, вакуоли исчезают, ядро заполняет большую часть клетки. Образуется так называемый первичный клубенек, в плазме клеток которого клубеньковые бактерии отсутствуют, поскольку они на данной стадии еще находятся внутри инфекционных нитей. В то время как образуется первичный клубенек, инфекционные нити многократно разветвляются и могут проходить или между клетками- интерцеллюлярно (рис. 154), или сквозь клетки - интрацеллюлярно - и вносить бактерии (рис. 155).

,

Межклеточные инфекционные нити вследствие активного размножения в них клубеньковых бактерий нередко приобретают причудливую форму - формируются в виде карманов (дивертикулов) или факелов (см. рис. 154).

Процесс передвижения инфекционных нитей из клетки в клетку не совсем ясен. По-видимому, инфекционные нити, как полагает канадский микробиолог Д. Джордан (1963), блуждают в виде голых слизистых тяжей в межклеточных промежутках растительной ткани до тех пор, пока вследствие каких-то еще необъяснимых причин не начинают инвагинировать в цитоплазму примыкающих клеток.

В некоторых случаях инвагинация инфекционной нити происходит в одну, в некоторых случаях - в каждую соседнюю клетку. По этим инвагинированным трубчатым полостям (дивертикулам) перетекает заключенное в слизь содержимое нити. Наиболее активный рост инфекционных нитей происходит обычно вблизи ядра растительной клетки. Проникновение нити сопровождается перемещением ядра, которое продвигается к месту инфекции, увеличивается, меняет форму и дегенерирует. Подобная картина наблюдается при грибной инфекции, когда ядро нередко устремляется навстречу внедрившимся гифам, притягивается к повреждению как к месту наибольшей физиологической активности, вплотную придвигается к нити, разбухает и разрушается. Повидимому, это характерно для ответной реакции растения на инфекцию.

У однолетних растений инфекционные нити возникают обычно в первый период инфицирования корня, у многолетних - в течение длительного периода развития.

Бактерии могут высвобождаться из инфекционной нити в разное время и разными способами. Выход бактерий, как правило, весьма длительный процесс, особенно у многолетних растений. Обычно выход бактерий из инфекционной нити в цитоплазму растения-хозяина связывают с внутренним давлением, возникающим вследствие интенсивного размножения бактерий в нити и экскреции ими слизи. Иногда бактерии выскальзывают из нити группами, окруженными слизью инфекционной нити, в виде везикул (пузыревидных образований) (рис. 157). Поскольку везикулы не имеют оболочек, выход из них бактерий очень прост. В клетки растений клубеньковые бактерии могут попадать и поодиночке из межклеточных пространств (рис. 156).

,

Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина. Размножение их в этот период происходит делением перетяжкой (рис. 158). Основная масса бактерий размножается в цитоплазме клетки, а не в инфекционной нити. Зараженные клетки дают начало будущей бактероидной ткани.

Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. В момент митотического деления зараженных клеток клубеньковые бактерии могут скапливаться на двух противоположных полюсах материнской клетки и пассивно попадать в дочерние клетки. Каждая из незаряженных клеток находится при этом под сильным стимулирующим воздействием клубеньковых бактерий и вследствие этого также делится. Благодаря такому энергично протекающему митотическому делению меристематических клеток осуществляется распространение клубеньковых бактерий в ткани клубенька и увеличение объема бактероидной области.

Инфицированная ткань, состоящая из плотно лежащих и активно делящихся клеток, имеет сначала форму усеченного конуса. В дальнейшем вследствие постепенного роста этого конуса и одновременного деления и развития меристематических клеток ткань клубенька разрастается, утрачивая конусовидность.

Таким образом, клубенек увеличивается сначала в результате радиального и тангентального деления коровых клеток, а затем за счет увеличения их размера и одновременного деления. После того как растительные клетки полностью заполнятся бактериями, митоз прекращается. Однако клетки продолжают увеличиваться в размере и часто сильно вытягиваются. Размер их в несколько раз больше, чем у неинфицированных растительных клеток, которые расположены между ними в бактероидной зоне клубенька.

Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудистоволокнистым пучкам. Впервые сосудисто-волокнистые пучки наблюдал М. С. Воронин (1866). Время возникновения сосудистой системы в клубеньках различных видов бобовых растений различно. Так, у клубеньков сои начало развития сосудистых пучков совпадает с моментом проникновения клубеньковых бактерий в два слоя коровой паренхимы. С ростом клубенька проводящая система разрастается, разветвляется и окружает бактероидную область.

Параллельно с процессом дифференциации сосудистой системы идет формирование клубеньковой эндодермы из внешнего слоя первичного клубенька. Затем клубенек округляется, его периферийный клеточный слой окружается клубеньковой корой.

Корневой эпидермис разрывается, а клубенек продолжает развиваться и увеличиваться в размерах.

С помощью светового микроскопа на продольных срезах зрелых клубеньков обычно четко выделяются 4 характерные зоны тканевой дифференциации: кора, меристема, бактероидная зона и сосудистая система. Все ткани клубенька дифференцируются в акропетальной последовательности, так как новые клетки закладываются меристемой.

Клубеньковая кора - оболочка клубенька, выполняющая защитную функцию. Кора состоит из нескольких рядов незараженных паренхимных клеток, величина и особенности которых различны у разных бобовых культур. Чаще всего клетки коры имеют вытянутую форму и крупнее по сравнению с другими клетками клубенька.

В коре клубеньков многолетних деревянистых видов часто встречаются клетки с опробковевшими оболочками, содержащие смолы, танин, дубильные вещества.

Клубеньковая меристема расположена под клетками коры и представляет собой зону интенсивно делящихся также незараженных клеток. Для меристемы клубенька характерны плотно расположенные, без межклетников, мелкие тонкостенные клетки неправильной формы. Клетки меристемы клубенька подобны клеткам других типов меристематической ткани (верхушки корня, верхушки стебля). Клетки клубеньковой меристемы содержат плотную, тонко гранулированную цитоплазму с рибосомами, телами Гольджи, протопластидами, митохондриями и другими структурами. Встречаются небольшие вакуоли. В центре цитоплазмы расположено крупное ядро с ядерной мембраной, порами и четко выраженным ядрышком. Функции меристематических клеток заключаются в формировании клеток клубеньковой коры, бактероидной области и сосудистой системы. В зависимости от расположения меристемы клубеньки имеют разнообразную форму: шаровидную (горох, фасоль, сераделла, арахис) или цилиндрическую (люцерна, вика, чина, акация, клевер) (рис. 159). Меристема, расположенная отдельными участками по периферии клубенька, приводит к образованию муфтообразных клубеньков у люпина.

Клубеньковая меристема функционирует долго, даже во время некроза клубеньков, когда они уже наполнены лизирующейся бактероидной массой и разрушенными растительными клетками.

Бактероидная зона клубенька занимает его центральную часть и составляет от 16 до 50% от общей сухой массы клубеньков. В первый период формирования клубенька она, по существу, является бактериальной зоной (рис. 160), так как заполнена клетками бактерий, находящихся в бактериальной, а не бактероидной стадии развития. Тем не менее принято, когда идет речь о зоне клубеньковой ткани, содержащей бактерии, называть ее бактероидной.

Бактероидная область клубенька состоит в основном из инфицированных клубеньковыми бактериями клеток и частично из смежных с ними неинфицированных клеток, заполненных пигментами, дубильными веществами, а к осени - крахмалом.

В клубеньках, образованных эффективными штаммами клубеньковых бактерий, средний относительный объем бактероидной зоны выше, чем в клубеньках, сформировавшихся при внедрении неэффективных штаммов.

В некоторых случаях объем бактероидной области достигает максимума в ранний период жизни клубенька и впоследствии остается относительно постоянным. Бактероидная зона пронизана густой сетью инфекционных нитей, а по периферии окружена сосудисто-волокнистыми пучками.

Форма бактероидов в клубеньках разных видов бобовых культур может быть разнообразной (табл. 44). Так, у вики, чины и гороха они двухветвистые или вильчатые. Для клевера и эспарцета преобладающая форма бактероидов шаровидная, грушеобразная, вздутая, яйцевидная, для нута округлая. Форма бактероидов фасоли, сераделлы, лядвенца и люпина практически палочковидная.

Бактероиды заполняют большую часть растительной клетки, за исключением центральной зоны ядра и вакуолей. Так, процент бактероидов в бактероидной зоне окрашенного в розовый цвет клубенька составляет 94,2 к общему числу клубеньковых бактерий. Клетки бактероидов в 3-5 раз больше клеток бактерий (рис. 161, 1, 2).

Бактероиды клубеньковых бактерий представляют особый интерес в связи с тем, что они являются чуть ли не единственными обитателями клубеньков бобовых растений в период интенсивного связывания ими атмосферного азота. Отдельные исследователи считают бактероиды патологическими дегенеративными формами и не связывают процесс азотфиксации с бактероидной формой клубеньковых бактерий. Большинство исследователей находят, что бактероиды являются самыми жизнеспособными и активными формами клубеньковых бактерий и что фиксация азота атмосферы бобовыми растениями осуществляется только при их участии (рис. 162).

Сосудистая система клубенька обеспечивает связь между бактериями и растением-хозяином. По сосудистым пучкам транспортируются питательные вещества и продукты обмена. Сосудистая система развивается рано и функционирует длительное время.

Вполне сформировавшиеся сосуды имеют определенное строение: состоят из трахеид ксилемы, волокон флоэмы, ситовидных трубок и сопровождающих клеток.

В зависимости от вида бобовых культур связь клубенька осуществляется посредством одного или нескольких сосудистых пучков. Например, у гороха в основании клубенька имеется два дифференцированных сосудистых узла. Каждый из них обычно дважды дихотомически разветвляется, и в результате сквозь клубенек от места второго дихотомического разветвления проходит 8 пучков. Многие растения имеют лишь один пучок, в то же время у одного клубенька Sesbania grandiflora в возрасте одного года их удалось насчитать до 126. Довольно часто сосудистая система клубенька отделяется с внешней стороны от его коры слоем частично или полностью опробковевших клеток, получивших название клубеньковой эндодермы, соединенных с эндодермой корня. Клубеньковая эндодерма представляет собой внешний слой неинфицированной коровой паренхимы, расположенной между клубеньковой тканью и корневой корой.

У большей части видов растений клубеньки образуются по описанному типу. Следовательно, образование клубеньков - результат сложных явлений, начинающихся вне корня. Вслед за начальными фазами инфекции индуцируется образование клубенька, затем происходит распространение бактерий в зоне клубеньковой ткани и фиксация азота.

Все стадии развития клубеньковых бактерий, по данным чешского микробиолога В. Каша (1928), можно проследить на срезах клубеньков. Так, в верхней части клубенька, например, люцерны содержатся в основном мелкие делящиеся палочковидные клетки, в небольшом количестве молодые бактероиды, число которых возрастает постепенно по мере развития клубенька. В средней, окрашенной в розовый цвет части клубенька обнаруживаются преимущественно бактероидные клетки и реже мелкие палочковидные. В основании клубенька на ранних стадиях вегетации растения-хозяина бактероиды такие же, как и в средней его части, а к концу вегетации более раздутые и раньше дегенерирующие.

Сроки появления первых видимых клубеньков на корнях различных видов бобовых растений различны (М. В. Федоров, 1952). Появление их у большинства бобовых культур чаще всего происходит во время развития первых настоящих листьев. Так, образование первых клубеньков люцерны посевной наблюдается между 4-м и 5-м днями после прорастания, а на 7-8-й день этот процесс происходит у всех растений. Клубеньки у люцерны серповидной появляются через 10 дней.

В период функционирования клубеньки обычно плотные. Клубеньки, образованные активными культурами бактерий, в молодом возрасте имеют беловатую окраску. К моменту проявления оптимальной активности они становятся розовыми. Клубеньки, возникшие при инфекции неактивными культурами бактерий, зеленоватого тона. Нередко их структура практически не отличается от структуры клубеньков, образованных при участии активных штаммов клубеньковых бактерий, но они преждевременно разрушаются.

В некоторых случаях строение клубеньков, образуемых неактивными бактериями, отклоняется от нормы. Это выражается в дезорганизации клубеньковой ткани, утрачивающей обычно четко выраженную зональную дифференциацию.

Розовая окраска определяется наличием в клубеньках пигмента, по химическому составу близкого гемоглобину крови. В связи с зтим пигмент называется леггемоглобином (легоглобином) - гемоглобином Leguminosae. Легоглобин содержится лишь в тех клетках клубеньков, в которых имеются бактероиды. Он локализован в пространстве между бактероидами и окружающей их мембраной.

Количество его колеблется от 1 до 3 мг на 1 г клубенька, в зависимости от вида бобового растения.

У однолетних бобовых растений к концу вегетационного периода, когда заканчивается процесс азотфиксации, красный пигмент переходит в зеленый. Изменение цвета начинается у основания клубенька, позднее зеленеет его вершина. У многолетних бобовых растений позеленения клубеньков не происходит или оно наблюдается только у основания клубенька. У разных видов бобовых растений переход красного пигмента в зеленый происходит с разной степенью интенсивности и разной скоростью.

Клубеньки однолетних растений функционируют сравнительно недолго. У большинства бобовых культур некроз клубенька начинается в период цветения растения-хозяина и протекает обычно в направлении от центра к периферии клубенька. Один из первых признаков разрушения - образование слоя клеток с мощными стенками у основания клубенька. Этот слой клеток, расположенный перпендикулярно к главному сосуду корня, разъединяет его с клубеньком и задерживает обмен питательными веществами между растением-хозяином и тканями клубенька.

В клетках дегенерирующей ткани клубенька появляются многочисленные вакуоли, ядра теряют способность окрашиваться, часть клеток клубеньковых бактерий лизируется, часть мигрирует в окружающую среду в виде мелких кокковидных клеток-артроспор.

Процесс формирования артроспор в ткани лизирующегося клубенька показан на рисунках 163-165. Прекращают функционировать в этот период и инфекционные нити (рис. 166). Клетки хозяина утрачивают тургор и сжимаются теми соседними клетками, которым он еще свойствен.

,

,

,

Старые клубеньки темные, дряблые, мягкие. При надрезе из них выступает водянистая слизь. Процессу разрушения клубенька, начинающегося с опробковения клеток сосудистой системы, способствуют понижение фотосинтетической активности растения, сухость или чрезмерная влажность среды.

В разрушенном, ослизненном клубеньке обнаруживаются часто простейшие, грибы, бациллы и мелкие палочковидные клубеньковые бактерии.

Состояние растения-хозяина оказывает влияние на длительность функционирования клубенька. Так, по данным Ф. Ф. Юхимчука (1957), кастрируя или удаляя цветы люпина, можно продлить период его вегетации и вместе с тем время активной деятельности клубеньковых бактерий.

Клубеньки многолетних растений, в отличие от клубеньков однолетних, могут функционировать в течение многих лет. Так, например, карагана имеет многолетние клубеньки, в которых процесс старения клеток идет одновременно с образованием новых. У вистерии (глицинии китайской) также функционируют многолетние клубеньки, образуя на корнях хозяина шаровидные вздутия. К концу вегетационного периода бактероидная ткань многолетних клубеньков деградирует, но весь клубенек не отмирает. На следующий год он вновь начинает функционировать.

Факторы, определяющие симбиотические взаимоотношения клубеньковых бактерий с бобовыми растениями. Для симбиоза, обеспечивающего хорошее развитие растений, необходим определенный комплекс условий среды. Если условия окружающей среды будут неблагоприятными, то, даже несмотря на высокую вирулентность, конкурентную способность и активность микросимбионта, эффективность симбиоза будет низкой.

Для развития клубеньков оптимальная влажность 60-70% от полной влагоемкости почвы. Минимальная влажность почвы, при которой еще возможно развитие клубеньковых бактерий в почве, приблизительно равна 16% от полной влагоемкости. При влажности ниже этого предела клубеньковые бактерии обычно уже не размножаются, но тем не менее они не погибают и могут длительное время сохраняться в неактивном состоянии. Недостаток влаги приводит и к отмиранию уже сформировавшихся клубеньков.

Нередко в районах с недостаточным увлажнением многие бобовые растения развиваются, не образуя клубеньков.

Поскольку размножение клубеньковых бактерий в отсутствие влаги не происходит, в случае засушливой весны инокулированные (искусственно зараженные) семена необходимо вносить глубже в почву. Например, в Австралии семена с нанесенными на них клубеньковыми бактериями глубоко заделывают в почву. Интересно, что клубеньковые бактерии почв засушливого климата более стойко переносят засуху, чем бактерии почв влажного климата. В этом проявляется их экологическая приспособленность.

Избыточная влажность, как и ее недостаток, также неблагоприятна для симбиоза - из-за снижения степени аэрации в зоне корней ухудшается снабжение корневой системы растения кислородом. Недостаточная аэрация отрицательно влияет и на живущие в почве клубеньковые бактерии, которые, как известно, лучше размножаются при доступе кислорода. Тем не менее высокая аэрация в зоне корней приводит к тому, что кислород начинают связывать восстановители молекулярного азота, снижая степень азотфиксации клубеньков.

Важную роль во взаимоотношениях клубеньковых бактерий и бобовых растений играет температурный фактор. Температурные характеристики разных видов бобовых растений различны. Также и разные штаммы клубеньковых бактерий имеют свои определенные температурные оптимумы развития и активной фиксации азота. Следует отметить, что оптимальные температуры развития бобовых растений, образования клубеньков и азотфиксации не совпадают. Так, в природных условиях образование клубеньков может наблюдаться при температурах несколько выше 0 В°С, азотфиксация при таких условиях практически не происходит. Возможно, лишь арктические симбиозирующие бобовые растения связывают азот при очень низких температурах. Обычно же этот процесс происходит лишь при 10 В°С и выше. Максимальная азотфиксации ряда бобовых растений наблюдается при 20-25 В°С. Температура выше 30 В°С отрицательно влияет на процесс азотонакопления.

Экологическая адаптация к температурному фактору у клубеньковых бактерий значительно меньше, чем у многих типичных сапрофитных форм. По мнению Е. Н. Мишустина (1970), это объясняется тем, что естественной средой обитания клубеньковых бактерий являются ткани растений, где температурные условия регулируются растением-хозяином.

Большое влияние на жизнедеятельность клубеньковых бактерий и образование клубеньков оказывает реакция почвы. Для разных видов и даже штаммов клубеньковых бактерий значение рН среды обитания несколько различно. Так, например, клубеньковые бактерии клевера более устойчивы к низким значениям рН, чем клубеньковые бактерии люцерны. Очевидно, здесь также сказывается адаптация микроорганизмов к среде обитания. Клевер растет на более кислых почвах, чем люцерна. Реакция почвы как экологический фактор оказывает влияние на активность и вирулентность клубеньковых бактерий. Наиболее активные штаммы, как правило, легче выделить из почв с нейтральными значениями рН. В кислых почвах чаще встречаются неактивные и слабовирулентные штаммы. Кислая среда (рН 4,0- 4,5) оказывает непосредственное влияние и на растения, в частности нарушая синтетические процессы обмена веществ растений и нормальное развитие корневых волосков. В кислой среде у инокулированных растений резко сокращается срок функционирования бактероидной ткани, что ведет к снижению степени азотфиксации.

В кислых почвах, как отмечает А. В. Петербургский, в почвенный раствор переходят соли алюминия и марганца, неблагоприятно действующие на развитие корневой системы растений и процесс азотоусвоения, а также снижается содержание усвояемых форм фосфора, кальция, молибдена и углекислоты. Неблагоприятную реакцию почвы лучше всего устраняет известкование.

Размеры симбиотической азотфиксации определяются в значительной степени условиями питания растения-хозяина, а не клубеньковых бактерий. Клубеньковые бактерии как эндотрофные симбионты растений зависят в основном от растения при получении углеродсодержащих веществ и минеральных элементов питания.

Для клубеньковых бактерий ткань хозяина представляет такую питательную среду, которая может удовлетворить даже самый требовательный штамм вследствие содержания в ткани всех типов питательных веществ. Тем не менее после внедрения клубеньковых бактерий в ткань растения-хозяина их развитие определяется не только внутренними процессами, но и в значительной степени зависит от действия внешних факторов, оказывающих влияние на весь ход инфекционного процесса. Содержание или отсутствие того или иного питательного вещества в окружающей среде может быть определяющим моментом для проявления симбиотической азотфиксации.

Степень обеспеченности бобовых растений доступными формами минеральных соединений азота определяет эффективность симбиоза. На основании многочисленных лабораторных и вегетационных опытов известно, что чем больше азотсодержащих соединений в окружающей среде, тем с большим трудом внедряются бактерии в корень.

Сельскохозяйственная практика требует однозначно решить задачу - целесообразнее удобрять бобовые культуры азотом или же правы те исследователи, которые утверждают, что минеральный азот подавляет симбиотическую азотфиксацию бобовых культур и поэтому экономически выгоднее такие растения азотом не удобрять. На кафедре агрономической и биологической химии Московской сельскохозяйственной академии им. К. А. Тимирязева были проведены опыты, результаты которых дали возможность получить картину поведения симбионтов в условиях вегетационных и полевых опытов при обеспеченности растений разными дозами азота в среде. Установлено, что повышение содержания растворимых азотсодержащих соединений в среде в полевых условиях при оптимальных условиях произрастания растений не препятствует их симбиозу с клубеньковыми бактериями. Снижение доли атмосферного азота, усваиваемого растениями при повышенной обеспеченности минеральным азотом, имеет только относительный характер. Абсолютное количество азота, усвоенного бактериями из атмосферы, практически не снижается, даже нередко увеличивается по сравнению с растениями, выращивающимися в присутствии клубеньковых бактерий, но без внесения в почву азота.

Большое значение в активации усвоения азота бобовыми растениями имеет фосфорное питание. При низком содержании фосфора в среде проникновение бактерий в корень происходит, но клубеньки при этом не образуются. Бобовым растениям присущи некоторые особенности в обмене фосфорсодержащих соединений. Семена бобовых отличаются повышенным содержанием фосфора. Запасной фосфор при прорастании семян используется не так, как У Других культур,- сравнительно равномерно для формирования всех органов, а в большей степени сосредоточиваясь в корнях. Поэтому в ранние сроки развития бобовые растения, в отличие от злаковых, в большей степени удовлетворяют свои потребности в фосфоре за счет семядолей, а не запасов почвы. Чем крупнее семена, тем меньше бобовые растения зависят от фосфора почвы. Однако при симбиотическом способе существования потребность бобовых растений в фосфоре выше, чем при автотрофном. Поэтому при недостатке фосфора в среде у инокулированных растений ухудшается снабжение растений азотом.

Бобовые растения, как известно, выносят с урожаем значительно больше калия, чем другие сельскохозяйственные культуры. Поэтому калийные и особенно фосфорно-калийные удобрения существенно повышают продуктивность азотфиксации бобовыми растениями.

Положительное действие калия на образование клубеньков и интенсивность азотфиксации связано в значительной степени с физиологической ролью калия в углеводном обмене растения.

Кальций нужен не только для устранения излишней кислотности почвы. Он играет специфическую роль в развитии клубеньковых бактерий и обеспечении нормального симбиоза бактерий с растением-хозяином. Потребность клубеньковых бактерий в кальции частично может быть компенсирована стронцием. Интересно, что клубеньковые бактерии тропических культур, растущих на кислых латеритных почвах, не нуждаются в кальции. В этом опять проявляется экологическая адаптация клубеньковых бактерий, поскольку тропические почвы содержат очень небольшие количества кальция.

Для симбиотической азотфиксации необходимы также магний, сера и железо. При недостатке магния тормозится размножение клубеньковых бактерий, снижается их жизнедеятельность, подавляется симбиотическая азотфиксация. Сера и железо оказывают также благоприятное влияние на образование клубеньков и процесс азотфиксации, в частности играя несомненную роль в синтезе леггемоглобина.

Из микроэлементов особо отметим роль молибдена и бора. При недостатке молибдена клубеньки плохо образуются, в них нарушается синтез свободных аминокислот и подавляется синтез леггемоглобина. Молибден вместе с другими элементами с переменной валентностью (Fe, Сo, Сu) служит посредником при переносе электронов в окислительно-восстановительных ферментных реакциях. При дефиците бора в клубеньках не формируются сосудистые пучки, и вследствие этого нарушается развитие бактероидной ткани.

На формирование клубеньков у бобовых растений большое влияние оказывает углеводный обмен растений, определяемый рядом факторов: фотосинтезом, наличием в среде углекислого газа, физиологическими особенностями растений. Улучшение углеводного питания благоприятно сказывается на инокуляционном процессе и азотонакоплении. С . практической точки зрения большой интерес представляет использование соломы и соломистого свежего навоза для удобрения бобовых растений как источника углеводов. Но в первый год после внесения соломы в почву при ее разложении накапливаются токсические вещества. Следует отметить, что не все виды бобовых растений чувствительны к токсическим продуктам распада соломы; горох, например, не реагирует на них.

Определенное значение в симбиозе клубеньковых бактерий и бобовых растений имеют биологические факторы.

Большое внимание уделяется влиянию ризосферной микрофлоры на клубеньковые бактерии, которое может иметь как стимуляционный, так и антагонистический характер в зависимости от состава микроорганизмов ризосферы.

Много работ посвящено изучению фагов клубеньковых бактерий. Большинство фагов спо собны лизировать различные виды бактерий, некоторые специализированы лишь в отношении отдельных видов или даже штаммов клубеньковых бактерий. Фаги могут препятствовать внедрению бактерий в корень, вызывать лизис клеток в ткани клубенька. Фаги наносят большой ущерб, лизируя препараты клубеньковых бактерий на заводах, вырабатывающих нитрагин.

Среди различных видов насекомых, наносящих вред клубеньковым бактериям, особенно выделяется полосатый клубеньковый долгоносик, личинки которого разрушают клубеньки па корнях многих видов бобовых растений (главным образом однолетних). Широко распространен и щетинистый клубеньковый долгоносик.

Ранней весной самки клубеньковых долгоносиков откладывают от 10 до 100 яиц. Через 10-15 дней из яиц развиваются небольшие (до 5,5 мм), червеобразные, согнутые, белые, со светло-бурой головкой личинки, питающиеся преимущественно клубеньками и корневыми волосками. Только что вылупившиеся личинки проникают в клубенек и питаются его содержимым. Более взрослые личинки разрушают клубеньки снаружи. Одна личинка за 30-40 дней уничтожает 2-6 клубеньков. Особенно большой вред они наносят в сухую и жаркую погоду, когда развитие растений замедляется.

Клубеньки люцерны и некоторых других видов бобовых растений повреждает также большой люцерновый долгоносик.

Самки жука откладывают до 400 яиц, из которых развиваются безногие, дугообразные, желтовато-белые, с бурой головкой, покрытые бурыми щетинками личинки. Их длина 10- 14 мм. Цикл развития большого люцернового долгоносика протекает в течение двух лет.

Наличие нематод в корневой зоне различных видов бобовых растений отмечают многие исследователи. В прикорневой зоне гороха, например, обнаружено 47 видов нематод, среди них 25 паразитических.

На корнях молодых растений фасоли, люпина, клевера может паразитировать широко распространенная ростковая нематода. Самки этого вида, питающиеся корнями растений, откладывают яйца в ткани растения. Весь жизненный цикл развивающейся из яиц нематоды протекает обычно внутри тканей.

В степных районах на корнях люцерны, клевера и сои обнаружена степная нематода. Самки перед откладкой яиц проникают в корень, куда откладывают от 12 до 20 яиц. В корнях личинки проходят три личиночные стадии развития, нарушая функции корня и клубеньков.

Распространение клубеньковых бактерий в природе. Являясь симбиотическими организмами, клубеньковые бактерии распространяются в почвах, сопутствуя определенным видам бобовых растений. После разрушения клубеньков клетки клубеньковых бактерий попадают в почву и переходят к существованию за счет различных органических веществ подобно другим почвенным микроорганизмам. Почти повсеместное распространение клубеньковых бактерий является доказательством высокой степени их адаптируемости к различным почвенноклиматическим условиям, способности вести симбиотический и сапрофитный способ жизни.

Схематизируя имеющиеся к настоящему времени данные по распространению клубеньковых бактерий в природе, можно сделать следующие обобщения.

В целинных и окультуренных почвах присутствуют обычно в больших количествах клубеньковые бактерии тех видов бобовых растений, которые имеются в составе дикой флоры или культивируются длительное время в данной местности. Численность клубеньковых бактерий всегда наивысшая в ризосфере -бобовых растений, несколько меньше их в ризосфере других видов и мало в почве вдали от корней.

В почвах встречаются как эффективные, так и неэффективные клубеньковые бактерии. Имеется много данных о том, что длительное сапрофитное существование клубеньковых бактерий, особенно в почвах с неблагоприятными свойствами (кислых, засоленных), ведет к снижению и даже утрате активности бактерий.

Перекрестная заражаемость разных видов бобовых растений нередко приводит в природе и сельскохозяйственной практике к появлению на корнях клубеньков, недостаточно активно фиксирующих молекулярный азот. Это, как правило, зависит от отсутствия в почве соответствующих видов клубеньковых бактерий.

Особенно часто такое явление наблюдается при использовании новых видов бобовых растений, которые либо заражаются неэффективными видами бактерий перекрестных групп, либо развиваются без клубеньков.








Дата добавления: 2014-12-24; просмотров: 767;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.036 сек.