Способы дезактивации и локализации радиоактивных загрязнений
Существующие способы дезактивации можно классифицировать по различным признакам, которые, с одной стороны, определяются особенностями РА загрязнения, а с другой – условиями проведения самой дезактивации, выбор которой диктуется спецификой РА загрязнения различных объектов.
На рисунке 2 приведена классификация основных способов обеззараживания. В ее основу положены агрегатное состояние дезактивирующей среды и особенности проведения собственно дезактивации. В зависимости от агрегатного состояния дезактивирующей среды все способы можно разделить на безжидкостные, жидкостные и комбинированные. Жидкостные могут быть основаны на использовании механического воздействия (например, за счет напора струи воды) или в результате обработки специальными растворами.
Желание повысить эффективность дезактивации привело к осуществлению обработки путем сочетания различных способов. Под комплексной дезактивацией следует понимать обработку одного и того же объекта различными способами. Например, в Чернобыле оборудование и помещения обезвреживались сначала при помощи пылесосов, а затем с помощью ДР.
Рис. 2. Классификация способов дезактивации
Такая же последовательность соблюдалась при дезактивации полимерных полов помещений после локальных аварийных РА загрязнений порошкообразным препаратом. В условиях массового загрязнения может возникнуть необходимость многократной очистки. В Чернобыле многократная дезактивация проводилась вынужденно в связи с множественным вторичным загрязнением одних и тех же объектов и недостаточной эффективностью одноразовой обработки
Не все способы применяются одинаково часто. По этой причине их можно условно разделить на две группы — основные и вспомогательные. На рис.2 приведены основные способы дезактивации, особенности которых будут более подробно рассмотрены в дальнейшем.' К вспомогательным следует отнести те, которые осуществляются без применения технических средств (протирание загрязненной поверхности щетками или ветошью) или при помощи ультразвука, с использованием энергии электрического поля, оплавлением верхнего загрязненного слоя, шлифованием. Последняя группа вспомогательных способов в системе не применяется.
Процесс дезактивации происходит в две стадии, рис. 3. Первая заключается в преодолении связи между носителями РА загрязнений и поверхностью обрабатываемого объекта (1-б). В случаях глубинного РА загрязнения сначала производят извлечение глубинных загрязнений, на поверхность (1-а). После этого загрязнение переходит из глубинного в поверхностное и затем удаляется.
Не менее важной является вторая стадия процесса дезактивации. Она заключается в транспортировке РА загрязнений с обрабатываемого объекта (2) рис. 3. Когда вторая стадия проводится не в полной мере, а тем более отсутствует, то происходит оседание РА загрязнений (3). А это значит, что мы встречаемся со вторичным загрязнением уже в процессе самой дезактивации. Фактически имеет место перераспределение загрязнений на поверхности, а не их удаление.
Рис. 3. Стадии процесса дезактивации \ |
Подобное разграничение процесса дезактивации на две стадии несколько условно. Эта условность определяется тем, что обе стадии могут происходить одновременно, либо с преимуществом какой-либо из них. Исключение составляет дезактивация снятием верхнего загрязненного слоя, когда две стадии процесса происходят одновременно. Далее приведена краткая характеристика основных способов дезактивации.
Дезактивация струей газа (воздуха) и пылеотсасыванием. В первой стадии процесса дезактивации струей газа (воздуха) с поверхности удаляются РА загрязнения в виде жидкости, мелких частиц и структурированных масс; РА загрязнения переводятся во взвешенное или аэрозольное состояние. Для повышения эффективности используется воздушная струя с. введенным в нее порошка, обладающего абразивным действием и способного снять верхний слой, загрязнение которого вызвано проникновением РА веществ вглубь материала. Коэффициент дезактивации резко возрастает и может достигнуть 200, что гарантирует отличное качество обработки. Вторая стадия связана с удалением РА загрязнений с обрабатываемого объекта, когда эти загрязнения во взвешенном состоянии приобретают способность двигаться по инерции.
Данный способ можно использовать для дезактивации окрашенных металлических изделий и пористых материалов, например, бетона и кирпича, в случае глубинного загрязнения. Существенными недостатками является расход абразивного порошка, возникновение смеси РА загрязнений с отработавшим абразивным порошком, механическое повреждение обрабатываемых поверхностей, воздействие на человека аэрозолей. В связи с этим предпочтение следует отдать установкам, работающим на принципе замкнутого цикла.
При дезактивации пылеотсасыванием поток воздуха направлен не на обрабатываемую поверхность, а от нее. Фильтрация загрязненного потока позволяет улавливать удаленные частицы и осуществлять очистку на основе замкнутого цикла— в этом преимущество способа пылеотсасывания от дезактивацией струей газа или воздуха.
В процессе работы пылесосов загрязняются внутренние поверхности воздушного тракта и особенно пылесборник и фильтр. Это представляют опасность для персонала, а сама дезактивация пылесоса трудоемка и требует соблюдения особых мер безопасности.
Дезактивация снятием загрязненного слоя и изоляцией загрязненной поверхности. При снятии загрязненного слоя совмещаются две стадии процесса дезактивации. Этот способ может быть реализован в отношении местности, дорог, окрашенных изделий, строительных материалов и конструкций и т.п.
С учетом гарантии эффективной дезактивации, неровностей обрабатываемых поверхностей и грунта, неравномерности проникновения РН можно считать, что снимаемый верхний загрязненный слой должен быть в два раза толще глубины проникновения РН.
К недостаткам данного метода следует отнести сопутствующие процессы, связанные с транспортировкой снятого загрязненного материала, его захоронением, что оборачивается неизбежным вторичным РА загрязнением и требует проведения дополнительных дезактивационных работ. Весь процесс дезактивации снятием загрязненного слоя весьма трудоемок.
Изоляция загрязненной поверхности направлена, главным образом, на защиту от гамма-излучения. В таблице 3 приведены расчетные значения толщины для среднего значения энергии гамма-излучения, составляющего 0,4 МэВ.
Таблица 7
Дата добавления: 2014-12-24; просмотров: 1743;