Скрэмблирование

Перемешивание данных скрэмблером перед передачей их в линию с помощью потенциального кода является другим способом логического кодирования.

Методы скрэмблирования заключаются в побитном вычислении результирующего кода на основании бит исходного кода и полученных в предыдущих тактах бит результирующего кода. Например, скрэмблер может реализовывать следующее соотношение:

где Bi - двоичная цифра результирующего кода, полученная на i-м такте работы скрэмблера, Ai - двоичная цифра исходного кода, поступающая на i-м такте на вход скрэмблера, Bi-з и Bi-5 - двоичные цифры результирующего кода, полученные на предыдущих тактах работы скрэмблера, соответственно на 3 и на 5 тактов ранее текущего такта, - операция исключающего ИЛИ (сложение по модулю 2). Например, для исходной последовательности 110110000001 скрэмблер даст следующий результирующий код: B1 = А1 = 1 (первые три цифры результирующего кода будут совпадать с исходным, так как еще нет нужных предыдущих цифр)

Таким образом, на выходе скрэмблера появится последовательность 110001101111, в которой нет последовательности из шести нулей, присутствовавшей в исходном коде.

После получения результирующей последовательности приемник передает ее дескрэмблеру, который восстанавливает исходную последовательность на основании обратного соотношения:

Различные алгоритмы скрэмблирования отличаются количеством слагаемых, дающих цифру результирующего кода, и сдвигом между слагаемыми. Так, в сетях ISDN при передаче данных от сети к абоненту используется преобразование со сдвигами в 5 и 23 позиции, а при передаче данных от абонента в сеть - со сдвигами 18 и 23 позиции.

Существуют и более простые методы борьбы с последовательностями единиц, также относимые к классу скрэмблирования.

Для улучшения кода Bipolar AMI используются два метода, основанные на искусственном искажении последовательности нулей запрещенными символами.

На рис. 2.17 показано использование метода B8ZS (Bipolar with 8-Zeros Substitution) и метода HDB3 (High-Density Bipolar 3-Zeros) для корректировки кода AMI. Исходный код состоит из двух длинных последовательностей нулей: в первом случае - из 8, а во втором - из 5.

Рис. 2.17. Коды B8ZS и HDB3. V - сигнал единицы запрещенной полярности; 1*-сигнал единицы корректной полярности, но заменившей 0 в исходном коде

Код B8ZS исправляет только последовательности, состоящие из 8 нулей. Для этого он после первых трех нулей вместо оставшихся пяти нулей вставляет пять цифр: V-1*-0-V-1*. V здесь обозначает сигнал единицы, запрещенной для данного такта полярности, то есть сигнал, не изменяющий полярность предыдущей единицы, 1* - сигнал единицы корректной полярности, а знак звездочки отмечает тот факт, что в исходном коде в этом такте была не единица, а ноль. В результате на 8 тактах приемник наблюдает 2 искажения - очень маловероятно, что это случилось из-за шума на линии или других сбоев передачи. Поэтому приемник считает такие нарушения кодировкой 8 последовательных нулей и после приема заменяет их на исходные 8 нулей. Код B8ZS построен так, что его постоянная составляющая равна нулю при любых последовательностях двоичных цифр.

Код HDB3 исправляет любые четыре подряд идущих нуля в исходной последовательности. Правила формирования кода HDB3 более сложные, чем кода B8ZS. Каждые четыре нуля заменяются четырьмя сигналами, в которых имеется один сигнал V. Для подавления постоянной составляющей полярность сигнала V чередуется при последовательных заменах. Кроме того, для замены используются два образца четырехтактовых кодов. Если перед заменой исходный код содержал нечетное число единиц, то используется последовательность 000V, а если число единиц было четным - последовательность 1*00V.

Улучшенные потенциальные коды обладают достаточно узкой полосой пропускания для любых последовательностей единиц и нулей, которые встречаются в передаваемых данных. На рис. 2.18 приведены спектры сигналов разных кодов, полученные при передаче произвольных данных, в которых различные сочетания нулей и единиц в исходном коде равновероятны. При построении графиков спектр усреднялся по всем возможным наборам исходных последовательностей. Естественно, что результирующие коды могут иметь и другое распределение нулей и единиц. Из рис. 2.18 видно, что потенциальный код NRZ обладает хорошим спектром с одним недостатком - у него имеется постоянная составляющая. Коды, полученные из потенциального путем логического кодирования, обладают более узким спектром, чем манчестерский, даже при повышенной тактовой частоте (на рисунке спектр кода 4В/5В должен был бы примерно совпадать с кодом B8ZS, но он сдвинут в область более высоких частот, так как его тактовая частота повышена на 1/4 по сравнению с другими кодами). Этим объясняется применение потенциальных избыточных и скрэмблированных кодов в современных технологиях, подобных FDDI, Fast Ethernet, Gigabit Ethernet, ISDN и т. п. вместо манчестерского и биполярного импульсного кодирования.

Рис. 2.18. Спектры потенциальных и импульсных кодов








Дата добавления: 2014-12-21; просмотров: 864;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.