Основные характеристики ЭВМ 1 страница

Первые электронные вычислительные машины (ЭВМ) появились всего лишь в середине прошлого века. За это время микроэлектроника, вычислительная техника и вся индустрия информатики стали одними из основных составляющих мирового научно-технического прогресса. Влияние вычислительной техники на все сферы деятельности человека продолжает расширяться вширь и вглубь. В настоящее время ЭВМ используются не только для выполнения сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.д. Это объясняется тем, что ЭВМ способны обрабатывать любые виды информации:

ª числовую,

ª текстовую,

ª табличную,

ª графическую

ª видео,

ª звуковую.

Электронная вычислительная машина (ЭВМ) - комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей.

Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы. ¨

Требования пользователей к выполнению вычислительных работ удовлетворяются специальным подбором и настройкой технических и программных средств. Обычно эти средства взаимосвязаны и объединяются в одну структуру.

Структура - совокупность элементов и их связей, которая рассматривается в конкретном приложении.

Различают структуры технических, программных и аппаратно-программных средств. Выбирая ЭВМ для решения своих задач, пользователь интересуется функциональными возможностями технических и программных модулей (как быстро может быть решена задача, насколько ЭВМ подходит для решения данного круга задач, какой сервис программ имеется в ЭВМ, возможности диалогового режима, стоимость подготовки и решения задач и т.д.). При этом пользователь интересуется не конкретной технической и программной реализацией отдельных модулей, а более общими вопросами возможности организации вычислений. Последнее включается в понятие архитектуры ЭВМ, содержание которого достаточно обширно.

Архитектура ЭВМ – это описание цифровой вычислительной системы на некотором общем уровне, включающем

Ø пользовательских возможностей программирования;

Ø Описание системы команд;

Ø Средства пользовательского интерфейса;

Ø Организацию памяти и систему адресации;

Ø Операции ввода/вывода и управления и т.п.

В контексте разработки вычислительной системы (ВС) и проектирования термин «Архитектура ЭВМ» используется для описания принципов действия, конфигурации и взаимного соединения логических узлов ЭВМ. Архитектура ЭВМ - это многоуровневая иерархия аппаратно-программных средств, каждый из уровней допускает многовариантное построение и применение. Конкретная реализация уровней определяет особенности структурного построения ЭВМ.

Детализацией архитектурного и структурного построения ЭВМ занимаются различные категории специалистов вычислительной техники. Инженеры-схемотехники проектируют отдельные технические устройства и разрабатывают методы их сопряжения друг с другом. Системные программист создают программы управления техническими средствами, информационного взаимодействия между уровнями, организации вычислительного процесса. Программисты-прикладники разрабатывают пакеты программ более высокого уровня, которые обеспечивают взаимодействие пользователей с ЭВМ и необходимый сервис при решении ими своих задач.

Самого же пользователя интересуют обычно более общие вопросы, касающиеся его взаимодействия с ЭВМ (человеко-машинного интерфейса), начиная со следующих групп характеристик ЭВМ, определяющих ее структуру (см. рисунок 1.1):

Ø технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.);

Ø характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств; возможность изменения структуры;

Ø состав программного обеспечения ЭВМ и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

 
 

 


Одной из важнейших характеристик ЭВМ является ее быстродействие, которое характеризуется числом команд, выполняемых ЭВМ за одну секунду. Поскольку в состав команд ЭВМ включаются операции, различные по длительности выполнения и по вероятности их использования, то имеет смысл характеризовать его или средним быстродействием ЭВМ, или предельным (для самых «коротких» операций типа «регистр-регистр»). Современные вычислительные машины имеют очень высокие характеристики по быстродействию, измеряемые десятками и сотнями миллионов операций в секунду. Например, в ближайшее время ожидается появление микропроцессора совместного производства фирм Intel и Hewlett-Packard (шифр Р7), быстродействие которого должно достичь миллиарда операций в секунду.

Реальное или эффективное быстродействие, обеспечиваемое ЭВМ, значительно ниже, и оно может сильно отличаться в зависимости от класса решаемых задач. Сравнение по быстродействию различных типов ЭВМ, резко отличающихся друг от друга своими характеристиками, не обеспечивает достоверных оценок. Поэтому очень часто вместо характеристики быстродействия используют связанную с ней характеристику производительности (эффективность) – объем работ, осуществляемых ЭВМ в единицу времени. Например, можно определять этот параметр числом задач, выполняемых за определенное время.

, где Кз – количество выполненных задач за промежуток времени длиной t.

Однако сравнение по данной характеристике ЭВМ различных типов может вызвать затруднения. Поскольку оценка производительности различных ЭВМ является важной практической задачей, хотя такая постановка вопроса также не вполне корректна, были предложены к использованию относительные характеристики производительности. Так, например, фирма Intel для оценки процессоров предложила тест, получивший название индекс iCOMP (Intel Comparative Microprocessor Performance). При его определении учитываются четыре главных аспекта производительности: работа с целыми числами, с плавающей точкой, графикой и видео. Данные имеют 16- и 32-разрядное представление. Каждый из восьми параметров при вычислении участвует со своим весовым коэффициентом, определяемым по усредненному соотношению между этими операциями в реальных задачах (таблица 1.1).

Таблица 1.1 - Индекс iCOMP

Типы данных Тест Весовой коэффициент в iCOMP, %
16- разрядные целые PC Labs v7.01; Processor
32- разрядные целые SPECint92
16- разрядные, графика PC Labs WinBench v3.11
32- разрядные, графика SPECint92
16- разрядные, видео PC Labs v7.01; Video
32- разрядные, видео SPECint92
16-разрядные вещественные Power Meter vl.7; Whetstone PC Labs v7.01; Math Coprocessor
32-разрядные вещественные SPECfp92

По индексу iCOMP микропроцессор Pentium 100 имеет значение 810, а Pentium 133 - 1000.

Другой важнейшей характеристикой ЭВМ является емкость запоминающих устройств, которая измеряется количеством структурных единиц информации, которое может одновременно находиться в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах. Современные единицы измерения приведены в таблице 1.2.

Таблица 1.2 – Единицы измерения информации

1 байт = 8 бит
1 слово = 2 байта = 16 бит
1 Кбайт = 210 (1024) байта
1 Мбайт = 210Kбaйтa = = 220 байта
1 Гбайт = 210 Мбайта = 220 Кбайта = 230 байта
1 Тбайт = 210 Гбайта = 220 Мбайта = 230 Кбайт = 240 байта

Обычно отдельно характеризуют емкость оперативной памяти и емкость внешней памяти. В настоящее время персональные ЭВМ могут иметь емкость оперативной памяти, равную 1-16 Гбайтам и даже больше. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

Емкость внешней памяти зависит от типа носителя. Так, емкость одной дискеты составляет 1,44 Мбайта в зависимости от типа дисковода и характеристик дискет. Емкость жесткого диска может достигать нескольких десятков и даже сотен Гбайтов, емкость компакт-диска (CD ROM) - сотни Мбайтов (640 Мбайт и выше) и т.д. Емкость внешней памяти характеризует объем программного обеспечения и отдельных программных продуктов, которые могут устанавливаться в ЭВМ. Например, для установки операционной среды Windows 95 требуется объем памяти жесткого диска более 100 Мбайт и не менее 8-16 Мбайт оперативной памяти ЭВМ.

Надежность - это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени (стандарт ISO 23 82/14-78)¨.

Высокая надежность ЭВМ закладывается в процессе ее производства. Переход на новую элементную базу - сверхбольшие интегральные схемы (СБИС) резко сокращает число используемых интегральных схем, а значит, и число их соединений друг с другом. Хорошо продуманы компоновка компьютера и обеспечение требуемых режимов работы (охлаждение, защита от пыли). Модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранение неисправностей.

Точность - возможность различать почти равные значения (стандарт ISO 2382/2-76).

Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

Во многих применениях ЭВМ не требуется большой точности, например, при обрабатывании текстов и документов, при управлении технологическими процессами. В этом случае достаточно использовать 8-и, 16- разрядные двоичные коды.

При выполнении сложных расчетов требуется использовать более высокую разрядность (32, 64 и даже более). Поэтому все современные ЭВМ имеют возможность работы с 16- и 32- разрядными машинными словами. С помощью средств программирования языков высокого уровня этот диапазон может быть увеличен в несколько раз, что позволяет достигать очень высокой точности.

Достоверность – свойство информации быть правильно воспринятой.

Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратурно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

1.2. Классификация средств ЭВМ

В настоящее время в мире произведены, работают и продолжают выпускаться миллионы вычислительных машин, относящихся к различным поколениям, типам, классам, отличающихся своими областями применения, техническими характеристиками и вычислительными возможностями. Традиционно электронную вычислительную технику (ЭВТ) подразделяют на аналоговую и цифровую.

1. В аналоговых вычислительных машинах (АВМ) обрабатываемая информация представляется соответствующими значениями аналоговых величин: тока, напряжения, угла поворота какого-то механизма и т.п. Эти машины обеспечивают приемлемое быстродействие, но не очень высокую точность вычислений (0.001-0.01). Распространены подобные машины не очень широко. Они используются в основном в проектных и научно-исследовательских учреждениях в составе различных стендов по отработке сложных образцов техники. По своему назначению их можно рассматривать как специализированные вычислительные машины.

2. В настоящее время под словом ЭВМ обычно понимают цифровые вычислительные машины, в которых информация кодируется двоичными кодами чисел. Именно эти машины благодаря универсальным возможностям и являются самой массовой вычислительной техникой.

Рынок современных компьютеров отличается разнообразием и динамизмом, каких еще не знала ни одна область человеческой деятельности. Каждый год стоимость вычислений сокращается примерно на 25-30%, стоимость хранения единицы информации - до 40%. Практически каждое десятилетие меняется поколение машин, каждые два года - основные типы микропроцессоров - СБИС, определяющих характеристики новых ЭВМ. Такие темпы сохраняются уже многие годы.

То, что 10-15 лет назад считалось современной большой ЭВМ, в настоящее время является устаревшей техникой с очень скромными возможностями. Современный персональный компьютер с быстродействием в десятки и сотни миллионов операций в секунду становится доступным средством для массового пользователя.

В этих условиях любая предложенная классификация ЭВМ очень быстро устаревает и нуждается в корректировке. Например, в классификациях десятилетней давности широко использовались названия мини-, миди- и микроЭВМ, которые почти исчезли из обихода. Вместе с тем существует целый ряд закономерностей развития вычислительной техники, которые позволяют предвидеть и предсказывать основные результаты этого поступательного движения. Необходимо анализировать традиционные и новые области применения ЭВМ, классы и типы используемых вычислительных средств, сложившуюся конъюнктуру рынка информационных технологий и его динамику, количество и качество вычислительной техники, выпускаемой признанными лидерами - производителями средств ЭВТ и т.д. Коротко рассмотрим эти основные вопросы, выяснение которых позволит понять, какая вычислительная техника требуется для решения определенных задач.

Академик В. М. Глушков указывал, что существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ.

Первое направление является традиционным – применение ЭВМ для автоматизации вычислений. Научно-техническая революция во всех областях науки и техники постоянно выдвигает новые научные, инженерные, экономические задачи, которые требуют проведения крупномасштабных вычислений (задачи проектирования новых образцов техники, моделирования сложных процессов, атомная и космическая техника и др.). Отличительной особенностью этого направления является наличие хорошей математической основы, заложенной развитием математических наук и их приложений. Первые, а затем и последующие вычислительные машины классической структуры в первую очередь и создавались для автоматизации вычислений.

Вторая сфера применения ЭВМ связана с использованием их в системах управления сложными техническими системами. Она родилась примерно в 60-е годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Математическая база этой новой сферы практически отсутствовала, в течение последующих 15-20 лет она была создана.

Новое применение вычислительных машин потребовало видоизменения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки.

Сопряжение с каналами связи потребовало усложнения режимов работы ЭВМ, сделало их многопрограммными и многопользовательскими. Для исключения взаимных помех между программами пользователей в структуру машин были введены средства разграничения: блоки прерываний и приоритетов, блоки защиты и т.п. Для управления разнообразной периферией стали использоваться специальные процессоры ввода-вывода данных или каналы. Именно тогда и появился дисплей как средство оперативного человеко-машинного взаимодействия пользователя с ЭВМ.

Новой сфере работ в наибольшей степени отвечали мини-ЭВМ. Именно они стали использоваться для управления отраслями, предприятиями, корпорациями. Машины нового типа удовлетворяли следующим требованиям:

ü были более дешевыми по сравнению с большими ЭВМ, обеспечивающими централизованную обработку данных;

ü были более надежными, особенно при работе в контуре управления;

ü обладали большой гибкостью и адаптируемостью настройки на конкретные условия функционирования;

ü имели архитектурную прозрачность, т.е. структура и функции ЭВМ были понятны пользователям.

Начало выпуска подобных ЭВМ связано с малыми управляющими машинами PDP фирмы DEC. Термин «мини-ЭВМ» появился в 1968 г. применительно к модели PDP-8. В настоящее время использование мини-ЭВМ сокращается. Исчезает и термин мини-ЭВМ. На смену им приходят ЭВМ других типов: серверы, обеспечивающие диспетчерские функции в сетях ЭВМ, средние ЭВМ или старшие модели персональных ЭВМ (ПЭВМ).

Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто математических расчетов постоянно сокращалась, и в настоящее время она составляет около 10% от всех вычислительных работ. Машины все больше стали использоваться для новых видов обработки: текстов, графики, звука и др.

Третье направление связано с применением ЭВМ для решения задач искусственного интеллекта. Задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много:

Ø задачи робототехники,

Ø доказательства теорем,

Ø машинного перевода текстов с одного языка на другой,

Ø планирования с учетом неполной информации,

Ø составления прогнозов,

Ø моделирования сложных процессов и явлений и т.д.

Это направление все больше набирает силу. Во многих областях науки и техники создаются и совершенствуются базы данных (БД) и базы знаний (БЗ), экспертные системы (ЭС). Для технического обеспечения этого направления нужны качественно новые структуры ЭВМ с большим количеством вычислителей (ЭВМ или процессорных элементов), обеспечивающих параллелизм в вычислениях. По существу, ЭВМ уступают место сложнейшим вычислительным системам.

Уже это небольшое перечисление областей применения ЭВМ показывает, что для решения различных задач нужна соответственно и различная вычислительная техника. Поэтому рынок компьютеров постоянно имеет широкую градацию классов и моделей ЭВМ. Фирмы-производители средств ВТ очень внимательно отслеживают состояние рынка ЭВМ. Они не просто констатируют отдельные факты и тенденции, а стремятся активно воздействовать на них и опережать потребности потребителей. Так, например, фирма IBM, выпускающая примерно 80% мирового машинного «парка», в настоящее время выпускает в основном пять классов компьютеров, перекрывая ими широкий класс задач пользователей

Можно предложить следующую классификацию средств вычислительной техники, в основу которой положено их разделение по быстродействию (см. рисунок 1.2):

Ø СуперЭВМ для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных.

Ø Большие ЭВМ для комплектования ведомственных, территориальных и региональных вычислительных центров.

Ø Средние ЭВМ широкого назначения для управления сложными технологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов.

Ø Персональные и профессиональные ЭВМ, позволяющие удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня.

Ø Встраиваемые микропроцессоры, осуществляющие автоматизацию управления отдельными устройствами и механизмами.

 

 

 


Большие ЭВМ (mainframe), которые представляют собой многопользовательские машины с центральной обработкой, с большими возможностями для работы с базами данных, с различными формами удаленного доступа. Казалось, что с появлением быстропрогрессирующих ПЭВМ большие ЭВМ обречены на вымирание. Однако они продолжают развиваться, и выпуск их снова стал увеличиваться, хотя их доля в общем парке постоянно снижается. По оценкам фирмы IBМ, около половины всего объема данных в информационных системах мира должно храниться именно на больших машинах. Новое их поколение предназначено для использования в сетях в качестве крупных серверов. Начало этого направления было положено фирмой IBM еще в 60-е годы выпуском машин IBM/360, IBM/370. Эти машины получили широкое распространение в мире. Новая серия машин S/390 продолжает эту линию. Она насчитывает более двух десятков моделей: a) IBM S/390 Parallel Enterprise Server-Generation 3 (13 моделей) - призваны заменить большие ЭВМ ранних моделей. Они позволяют задавать переменную конфигурацию (число процессоров - 1-10, емкость оперативной памяти - 512-81292 Мбайта, число каналов - 3-256); б) IBM S/ 390 Multiprise 2000 (тоже 13 моделей) - ориентированы на использование на средних предприятиях (число процессоров 1-5).Развитие ЭВМ данного класса имеет большое значение для России. После подписания соглашения с фирмой IBM в марте 1993 г. Россия получила право производить 23 новейшие модели-аналоги ЭВМ IBM S/390 с производительностью от 1,5 до 167 млн. операций в секунду. По расходам на управление и эксплуатацию эти машины оказываются эффективнее других вычислительных средств. Машины RS/6000 - очень мощные по производительности и предназначенные для построения рабочих станций для работы с графикой, Unix-серверов, кластерных комплексов. Первоначально эти машины предполагалось применять для обеспечения научных исследований.

Средние ЭВМ, предназначенные в первую очередь для работы в финансовых структурах (ЭВМ типа AS/400 (Advanced Portable Model 3) –«бизнес - компьютеры», 64-разрядные). В этих машинах особое внимание уделяется сохранению и безопасности данных, программной совместимости и т.д. Они могут использоваться в качестве серверов в локальных сетях.

Компьютеры на платформе микросхем фирмы Intel. IBM-совместимые компьютеры этого класса составляют примерно 70% рынка всей компьютерной техники. Более половины их поступает в сферу малого бизнеса. Несмотря на столь внушительный объем выпуска персональных компьютеров этой платформы, фирма IBM проводит большие исследования и развитие собственной альтернативной платформы, получившей название Power PC. Это направление позволило бы значительно улучшить структуру аппаратурных средств ПК, а значит, и эффективность их применения. Однако новые модели этой платформы пока не выдерживают конкуренции с IBM PC. Немаловажным здесь является и неразвитость рынка программного обеспечения. Поэтому у массового пользователя это направление спроса не находит, и доля компьютеров с процессорами Power PC незначительна.

Кроме перечисленных типов вычислительной техники, необходимо отметить класс вычислительных систем, получивший название «супер-ЭВМ», С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объемов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. В этом случае ЭВМ позволяет методами численного моделирования получить результаты вычислительных экспериментов, обеспечивая приемлемое время и точность решения, т.е. решающим условием необходимости разработки и применения подобных ЭВМ является экономический показатель «производительность/стоимость». Например, при создании суперЭВМ GF-11 (Gigaflop-11) с быстродействием 11 млрд. операций в секунду предварительные расчеты, проведенные фирмой IBM, показали, что применение этой системы позволит решить целый комплекс новых задач. Одной из таких задач было уточнение массы протона на основе квантовой хромодинамики - доминирующей теории, пытающейся описать первичную структуру материи. При использовании новой ЭВМ должна была быть выполнена эта работа за 1,5 - 4 месяца с точностью 10%. Решение же этой задачи на существующей вычислительной технике требовало около 15 лет. Еще одним примером крупномасштабных задач следует считать задачу разработки новых схем СБИС для следующих поколений ЭВМ. СуперЭВМ позволяют по сравнению с другими типами машин точнее, быстрее и качественнее решать подобные задачи, обеспечивая необходимый приоритет в разработках перспективной вычислительной техники. Дальнейшее развитие суперЭВМ связывается с использованием направления массового параллелизма, при котором одновременно могут работать сотни и даже тысячи процессоров. Образцы таких машин уже выпускаются несколькими фирмами:

nCube (гиперкубические ЭВМ),

Connection Machine,

Mass Par,

NCR/Teradata,

KSR,

ШМ RS/6000,

MPP и др.

Необходимо отметить и еще один класс наиболее массовых средств ЭВТ - встраиваемые микропроцессоры. Успехи микроэлектроники позволяют создавать миниатюрные вычислительные устройства, вплоть до однокристальных ЭВМ. Эти устройства, универсальные по характеру применения, могут встраиваться в отдельные машины, объекты, системы. Они находят все большее применение в бытовой технике (телефонах, телевизорах, электронных часах, микроволновых печах и т.д.), в городском хозяйстве (энерго-, тепло- , водоснабжении, регулировке движения транспорта и т.д.), на производстве (робототехнике, управлении технологическими процессами). Постепенно они входят в нашу жизнь, все больше изменяя среду обитания человека.

Высокие скорости вычислений, обеспечиваемые ЭВМ различных классов, позволяют перерабатывать и выдавать все большее количество информации, что, в свою очередь, порождает потребности в создании связей между отдельно используемыми ЭВМ. Поэтому все современные ЭВМ в настоящее время имеют средства подключения к сетям связи и комплексирования в системы.

Перечисленные типы ЭВМ, которые должны использоваться в индустриально развитых странах, образуют некое подобие пирамиды с определенным соотношением численности ЭВМ каждого слоя и набором их технических характеристик. Распределение вычислительных возможностей по слоям должно быть сбалансировано. Например, система обработки данных, используемая на Олимпийских играх в Атланте, содержала: 4 больших ЭВМ S/390,16 систем RS/6000, более 80 систем AS/400, более 7000 IBM PC, более 1000 лазерных принтеров, более 250 локальных сетей Token Ring и др. Многие ПЭВМ имели сопряжение с датчиками скорости, времени и т.д.

Требуемое количество суперЭВМ для отдельной развитой страны, такой, как Россия, должно составлять 100-200 шт., больших ЭВМ - тысячи, средних - десятки и сотни тысяч, ПЭВМ - миллионы, встраиваемых микроЭВМ - миллиарды. Все используемые ЭВМ различных классов образуют машинный парк страны, жизнедеятельность которого и его информационное насыщение определяют успехи информатизации общества и научно-технического прогресса страны. Формирование сбалансированного машинного парка является сложной политической, экономической и социальной проблемой, решение которой требует многомиллиардных инвестиций. Для этого должна быть разработана соответствующая структура: создание специальных производств (элементной базы ЭВМ, программного обеспечения и технических связей), смена поколений машин и технологий, изменение форм экономического и административного управления, создание новых рабочих мест и т.д.

1.3. Общие принципы построения современных ЭВМ

Основным принципом построения всех современных ЭВМ является программное управление. В основе его лежит представление алгоритма решения любой задачи в виде программы вычислений. Приведем определения основных понятий, связанных с программированием. Следует заметить, что строгого, однозначного определения алгоритма, равно как и однозначных методов его преобразования в программу вычислений, не существует.

Алгоритм – заранее определенная последовательность действий, приводящая к решению задачи за конечное число шагов.

Алгоритм – конечный набор предписаний, определяющий решение задачи посредством конечного количества операций.¨

Программа – это набор операторов (команд), который может быть представлен как единое целое в некоторой вычислительной системе и который используется для управления поведением этой системы








Дата добавления: 2017-01-13; просмотров: 468;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.03 сек.