Т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.

Относительно системы отсчета, связанной с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

(27.2)

Проявление сил инерции при поступательном движении наблюдается в повседневных явлениях. Например, когда поезд набирает скорость, то пассажир, сидящий по ходу поезда, под действием силы инерции прижимается к спинке сиденья. Наоборот, при торможении поезда сила инерции направлена в противоположную сторону и пассажир удаляется от спинки сиденья. Особенно эти силы заметны при внезапном торможении поезда. Силы инерции проявляются в перегрузках, которые возникают при запуске и торможении космических кораблей.

2. Силы вверим, действующие на тело, покоящееся во вращающейся системе отсчета. Пусть диск равномерно вращается с угловой скоростью вокруг вертикальной оси, проходящей через

его центр. На диске, на разных расстояниях от оси вращения, установлены маятники (на нитях подвешены шарики массой т). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол (рис. 41).

В инерциальной системе отсчета, связанной, например, с помещением, где установлен диск, шарик равномерно вращается по окружности радиусом R (расстояние от центра вращающегося шарика до оси вращения). Следовательно, на него действует сила, равная и направленная

перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести Р и силы натяжения нити Когда движение шарика установится, то откуда

т. е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от центра шарика до оси вращения диска и чем больше угловая скорость вращения

Относительно системы отсчета, связанной с вращающимся диском, шарик покоится, что возмож­но, если сила F уравновешивается равной и противоположно направленной ей силой которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Сила

называемая центробежной силой инерции, направлена по горизонтали от оси вращения диска и равна

(27.3)




 


Действию центробежных сил инерции подвергаются, например, пассажиры в движущемся транспорте на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов и т. д.) принимаются специальные меры для уравновешивания це­нтробежных сил инерции.

Из формулы (27.3) вытекает, что центробежная сила инерции, действующая на тела во враща­ющихся системах отсчета в направлении радиуса от оси вращения, зависят от угловой скорости вращения системы отсчета и радиуса R, но не зависят от скорости тел относительно вращающихся систем отсчета. Следовательно, центробежная сила инерции действует во вращающихся системах отсчета на все тела, удаленные от оси вращения на конечное расстояние, независимо от того, покоятся ли они в этой системе (как мы предполагали до сих пор) или движутся относительно нее с какой-то скоростью.

3. Сbлы инерции действующие на тело, движущееся вовращающейсясистеме отчета. Пусть шарик массой т движется с постоянной скоростью вдоль радиуса равномерно вращающегося диска Если диск не вращается, то шарик, направленный вдоль радиуса,



движется по радиальной прямой и попадает в точку А, если же диск привести во вращение в направлении, указанном стрелкой, то шарик катится по кривой ОВ (рис. 42, а), причем его скорость относительно диска изменяет свое направление. Это возможно лишь тогда, если на шарик действует сила, перпендикулярная скорости

Для того чтобы заставить шарик катиться по вращающемуся диску вдоль радиуса, используем жестко укрепленный вдоль радиуса диска стержень, на котором шарик движется без трения равно­мерно и прямолинейно со скоростью (рис. 42, 6). При отклонении шарика стержень действует на него с некоторой силой F. Относительно диска (вращающейся системы отсчета) шарик движется равномерно и прямолинейно, что можно объяснить тем, что сила F уравновешивается приложенной к шарику силой инерции перпендикулярной скорости Эта сила называется кориолисовой силой

Можно показать, что сила Кориолиса*

(27.4)

Вектор перпендикулярен векторам скорости тела и угловой скорости вращения системы отсчета в соответствии с правилом правого винта.

Сила Кориолиса действует только на тела, движущиеся относительно вращающейся системы отсчета, например относительно Земли. Поэтому действием этих сил объясняется ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север (рис. 43), то действующая на него сила Кориолиса, как это следует из выражения (27.4), будет направлена вправо по отношению к направлению движения, т. е. тело несколько отклонится на восток. Если тело движется на юг, то сила Кориолиса также действует вправо, если смотреть по направлению движения, т. е. тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее,

•Г. Кориолис (1792—1843) — французский физик и инженер.


чем левые, в т. д. Аналогично можно показать, что в южном полушарии сила Кориолиса, дейст­вующая на движущиеся тела, будет направлена влево по отношению к направлению движения.

Благодаря силе Кориолиса падающие на поверхность Земли тела отклоняются к востоку (на широте 60° это отклонение должно составлять 1 см при падении с высоты 100 м). С силой Кориолиса связано поведение маятника Фуко, явившееся в свое время одним из доказательств вращения Земли. Еели бы этой силы не было, то плоскость колебаний качающегося вблизи поверх­ности Земли маятника оставалась бы неизменной (относительно Земли). Действие же сил Кориолиса приводит к вращению плоскости колебаний вокруг вертикального направления

Раскрывая содержание в формуле (27.1), получим основной закон динамики для неинециональных систем отсчета:

<== предыдущая лекция | следующая лекция ==>
Неинерционные системы отсчета. Силы инерции | Давление в жидкости и газа


Дата добавления: 2017-04-20; просмотров: 32; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2017 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.089 сек.