Примеры информационных моделей

 

Определим информационную модель как связанную совокупность информационных объектов, описывающих информационные процессы в исследуемой предметной области. Существующие информационные модели разделим на универсальные и специализированные. Специализированные модели предназначены для описания конкретных систем, являются уникальными по своим возможностям, более дорогостоящими. Универсальные модели предназначены для использования в различных предметных областях, к ним относятся: базы данных и системы управления базами данных, автоматизированные системы управления, базы знаний, экспертные системы.

Модели конечных автоматов представляют собой перечень ограниченного числа состояний объекта и условия перехода из одного состояния в другое (эти условия могут быть однозначно заданы – детерминированный конечный автомат или включать «бросание жребия» – вероятностный автомат). Такие модели хорошо подходят для задач оперативного управления, например, выбора момента переключения светофора в зависимости от ситуации на перекрёстке или выбора модели, запускаемой на сборочный конвейер в зависимости от наличия комплектующих.

Модели графов, представляющие из себя множество вершин (узлов) и соединяющих некоторые из вершин линий (ребер, дуг). Эти модели позволяют описывать планирование строительства (сетевые графики) и задачи логистики (маршрутизации потоков), например, классическую «задачу коммивояжёра» – выбора наиболее короткого и неповторяющегося маршрута развозки товара.

Модели интеллектуальных систем, основанные на имитации рассуждений экспертов при решении сложных задач, – в компьютере формируется набор правил логического вывода, который опирается на знание эксперта в конкретной предметной области и позволяет перейти от описания исходной ситуации к заключению о наилучшем из нескольких возможных вариантов действия. Такой подход оказывается эффективным при решении задач планирования, требующих перебора огромного числа вариантов, очень быстро (по экспоненте) растущего с ростом размерности задачи (такие задачи называют экспоненциальными).

Модели эволюции используют генетические алгоритмы, которые имитируют действующие в живой природе механизмы случайной генерации наследуемых изменений с последующим естественным отбором. Такие модели перспективны для решения широкого класса задач прогнозирования развития и отбора лучших вариантов, что подтверждается впечатляющими результатами эволюции в природе.

Рассмотрим некоторые универсальные модели.

 






Дата добавления: 2015-09-14; просмотров: 221; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2017 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.