Уравнение Ван-дер-Ваальса примет вид

где поправки а и b— постоянные для каждого газа величины, определяемые опытным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состоя­ний газа и решаются относительно а и V).

При выводе уравнения Ван-дер-Ваальса сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.

Уравнение Ван-дер-Ваальса неединственное уравнение, описывающее реальные газы. Существу­ют и другиеуравнения, некоторые из них даже точнее описывают реальные газы, но не рассматрива­ются из-за их сложности.

§ 62. ИзотермыВан-дер-Ваальса и их анализ

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Вааль­са — кривые зависимости р от Vm при заданных Т, определяемые уравнением Ван-дер-Ваальса (61.2) для моля газа. Эти кривые (рассматриваются для четырех различных температур; рис. 89) имеют довольно своеобразный характер. При высоких температурах (T > Tk) изотерма реального газа отличается от изотермы идеального


газа только некоторым искажением ее формы, оставаясь монотонно спадающей кри­вой. При некоторой температуре на изотерме имеется лишь одна точка перегиба К.

Эта изотерма называется критической, соответствующая ей температура — крити­ческой температурой; точка перегиба К называется критической точкой; в этой точке { касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем и .цишин Pkназываются также критическими. Состояние с критическими парамет-

рами называется критическим состоянием. При низких температурах

изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз,

<== предыдущая лекция | следующая лекция ==>
Уравнение Ван-дер-Ваальса | Для пояснения характера изотерм преобразуем уравнение Ван-дер-Ваальса (61.2) к виду


Дата добавления: 2017-04-20; просмотров: 30; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2017 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.