D.1. Парная регрессия и корреляция
Пример. По территориям региона приводятся данные за 199X г.
Таблица D.1
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Требуется:
1.Построить линейное уравнение парной регрессии от .
2.Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3.Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.
4.Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.
5.Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.
6.На одном графике построить исходные данные и теоретическую прямую.
Решение
1.Для расчета параметров уравнения линейной регрессии строим расчетную таблицу D.2.
Таблица D.2
-16 | 12,0 | |||||||
-4 | 2,7 | |||||||
-23 | 17,2 | |||||||
2,6 | ||||||||
1,9 | ||||||||
10,8 | ||||||||
0,0 | ||||||||
0,0 | ||||||||
5,3 | ||||||||
3,1 | ||||||||
7,5 | ||||||||
-10 | 5,8 | |||||||
Итого | 68,9 | |||||||
Среднее значение | 85,6 | 155,8 | 13484,0 | 7492,3 | 24531,4 | – | – | 5,7 |
12,84 | 16,05 | – | – | – | – | – | – | |
164,94 | 257,76 | – | – | – | – | – | – |
;
.
Получено уравнение регрессии: .
С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,89 руб.
2.Тесноту линейной связи оценит коэффициент корреляции:
; .
Это означает, что 51% вариации заработной платы ( ) объясняется вариацией фактора – среднедушевого прожиточного минимума.
Качество модели определяет средняя ошибка аппроксимации:
.
Качество построенной модели оценивается как хорошее, так как не превышает 8-10%.
3.Оценку значимости уравнения регрессии в целом проведем с помощью -критерия Фишера. Фактическое значение -критерия:
.
Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы и составляет . Так как , то уравнение регрессии признается статистически значимым.
Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.
Табличное значение -критерия для числа степеней свободы и составит .
Определим случайные ошибки , , :
;
;
.
Тогда
;
;
.
Фактические значения -статистики превосходят табличное значение:
; ; ,
поэтому параметры , и не случайно отличаются от нуля, а статистически значимы.
Рассчитаем доверительные интервалы для параметров регрессии и . Для этого определим предельную ошибку для каждого показателя:
;
.
Доверительные интервалы
Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры и , находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.
4.Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит: руб., тогда прогнозное значение заработной платы составит: руб.
5.Ошибка прогноза составит:
.
Предельная ошибка прогноза, которая в случаев не будет превышена, составит:
.
Доверительный интервал прогноза:
руб.;
руб.
Выполненный прогноз среднемесячной заработной платы является надежным ( ) и находится в пределах от 131,66 руб. до 190,62 руб.
6.В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую (рис. D.1):
Рис. D.1.
Варианты индивидуальных заданий
Задача 1. По территориям региона приводятся данные за 199X г. (см. таблицу своего варианта).
Требуется:
1.Построить линейное уравнение парной регрессии от .
2.Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3.Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.
4.Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.
5.Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.
6.На одном графике построить исходные данные и теоретическую прямую.
Вариант 1
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 2
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 3
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 4
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 5
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 6
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 7
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 8
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 9
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 10
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Дата добавления: 2016-01-29; просмотров: 1262;