Уравнение Эйнштейна для фотоэффекта.

Фотоэффект. Фотоэлектрическим эффектом или фотоэффектом называется испускание электронов веществом под действием света. Принципиальная схема для исследования фотоэффекта приведена на рис.18.2. Два электрода (катод К из исследуемого материала и анод А) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно не только изменять значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь с амперметром. При изучении вольтамперных характеристик разнообразных материалов при различных частотах падающего на катод излучения и различных энергетических освещенностях катода были установлены следующие три закона фотоэффекта.

Из вольтамперной кривой (рис.18.3) видно, что при некотором напряжении

 

 

фототок достигает насыщения – все электроны, испущенные катодом, попадают на анод. Таким образом,

I. При фиксированной частоте падающего света число фотоэлектронов, выры­ваемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности катода).

Пологий ход кривой указывает на то, что электроны вылетают из катода с различными скоростями. Для отсечки тока нужно приложить задерживающее напряжение . При таком напряжении ни одному из электронов, даже обладающему наибольшей при вылете скоростью , не удается преодолеть задерживающее поле и достигнуть анода. Измерив задерживающее напряжение , по формуле можно определить максимальное значение скорости фотоэлектронов. Было выяснено:

II. Максимальная начальная скорость (максимальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой w.

III. Для каждого металла существует красная граница фотоэффекта, т.е. минимальная частота света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

В 1905 г. А. Эйнштейн показал, что все закономерности фотоэффекта легко объяснить, если предположить, что свет поглощается такими же порциями (кванта­ми), какими он, по предположению Планка, испускается. Энергия кванта, по предпо­ложению Эйнштейна, усваивается электроном целиком. Часть этой энергии, равная работе выхода A, затрачивается на то, чтобы электрон мог покинуть тело. Остаток энергии переходит в кинетическую энергию электрона. По закону сохранения энергии

. (18-19)

Уравнение (18-19) называется уравнением Эйнштейна.

Уравнение Эйнштейна позволяет объяснить II и III законы фотоэффекта. Из (18-19) следует, что максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты падающего излучения и не зависит от интенсивности последнего. В случае, когда работа выхода A превышает энергию кванта , электроны не могут покинуть металл. Следовательно, для возникновения фотоэффекта необходимо выполнения условия или

. (18-20)

Частота называется красной границей фотоэффекта.

Число высвобождаемых фотоэлектронов должно быть пропорционально числу падающих на поверхность квантов света. Вместе с тем энергетическая освещенность определяется количеством квантов света, падающих на единицу поверхности в единицу времени. В соответствии с этим ток насыщения должен быть пропорционален освещенности поверхности

. (18-21)


Эта зависимость также подтверждается экспериментально. Отметим, что лишь малая часть квантов передает свою энергию фотоэлектронам. Энергия остальных кантов затрачивается на нагревание вещества.

 








Дата добавления: 2015-04-15; просмотров: 1257;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.