Состояние процессов

В многозадачной (многопроцессной) системе процесс может находиться в одном из трех основных состояний:

ВЫПОЛНЕНИЕ - активное состояние процесса, во время которого процесс обладает всеми необходимыми ресурсами и непосредственно выполняется процессором;

ОЖИДАНИЕ - пассивное состояние процесса, процесс заблокирован, он не может выполняться по своим внутренним причинам, он ждет осуществления некоторого события, например, завершения операции ввода-вывода, получения сообщения от другого процесса, освобождения какого-либо необходимого ему ресурса;

ГОТОВНОСТЬ - также пассивное состояние процесса, но в этом случае процесс заблокирован в связи с внешними по отношению к нему обстоятельствами: процесс имеет все требуемые для него ресурсы, он готов выполняться, однако процессор занят выполнением другого процесса.

В ходе жизненного цикла каждый процесс переходит из одного состояния в другое в соответствии с алгоритмом планирования процессов, реализуемым в данной операционной системе. Типичный граф состояний процесса показан на рисунке.

В состоянии ВЫПОЛНЕНИЕ в однопроцессорной системе может находиться только один процесс, а в каждом из состояний ОЖИДАНИЕ и ГОТОВНОСТЬ - несколько процессов, эти процессы образуют очереди соответственно ожидающих и готовых процессов. Жизненный цикл процесса начинается с состояния ГОТОВНОСТЬ, когда процесс готов к выполнению и ждет своей очереди. При активизации процесс переходит в состояние ВЫПОЛНЕНИЕ и находится в нем до тех пор, пока либо он сам освободит процессор, перейдя в состояние ОЖИДАНИЯ какого-нибудь события, либо будет насильно "вытеснен" из процессора, например, вследствие исчерпания отведенного данному процессу кванта процессорного времени. В последнем случае процесс возвращается в состояние ГОТОВНОСТЬ. В это же состояние процесс переходит из состояния ОЖИДАНИЕ, после того, как ожидаемое событие произойдет.


Рис. Граф состояний процесса в многозадачной среде

3.История развития средств вычислительной техники.Процессы в ОС UNIX.

Во всей истории вычислительной техники можно проследить две основных области ее использования.

Первая область - применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. Развитие этой области способствовало интенсификации методов численного решения сложных математических задач, развитию класса языков программирования, ориентированных на удобную запись численных алгоритмов, становлению обратной связи с разработчиками новых архитектур ЭВМ.

Вторая область - это использование средств вычислительной техники в автоматических или автоматизированных информационных системах. В самом широком смысле информационная система представляет собой программно-аппаратный комплекс, функции которого состоят в надежном хранении информации в памяти компьютера, выполнении специфических для данного приложения преобразований информации или вычислений, предоставлении пользователям удобного и легко осваиваемого интерфейса. Обычно такие системы имеют дело с большими объемами информации, и эта информация имеет достаточно сложную структуру.

Классическими примерами информационных систем являются банковские системы, системы резервирования авиационных или железнодорожных билетов, мест в гостиницах и т. д.

Вторая область использования вычислительной техники возникла несколько позже первой. Это связано с тем, что на заре вычислительной техники возможности компьютеров по хранению информации были очень ограниченными. Говорить о надежном и долговременном хранении информации можно только при наличии запоминающих устройств, сохраняющих информацию после выключения электрического питания. Оперативная (основная) память компьютеров этим свойством обычно не обладает.

В первых компьютерах использовались два вида устройств внешней памяти - магнитные ленты и барабаны. Емкость магнитных лент была достаточно велика, но по своей физической природе они обеспечивали последовательный доступ к данным. Магнитные же барабаны (они больше всего похожи на современные магнитные диски с фиксированными головками) давали возможность произвольного доступа к данными, но были ограниченного размера.

Эти ограничения не являлись слишком существенными для чисто численных расчетов. Даже если программа должна обработать (или произвести) большой объем информации, при программировании можно продумать расположение этой информации во внешней памяти (например, на последовательной магнитной ленте), обеспечивающее эффективное выполнение этой программы.

Но для информационных систем, в которых потребность в текущих данных определяется конечным пользователем, наличие только магнитных лент и барабанов неудовлетворительно. Представьте себе покупателя билета, который, стоя у кассы, должен дождаться полной перемотки магнитной ленты. Одним из естественных требований к таким системам является удовлетворительная средняя скорость выполнения операций.

Как кажется, именно требования нечисленных приложений вызвали появление съемных магнитных дисков с подвижными головками, что явилось революцией в истории вычислительной техники. Эти устройства внешней памяти обладали существенно большей емкостью, чем магнитные барабаны, обеспечивали удовлетворительную скорость доступа к данным в режиме произвольной выборки, а возможность смены дискового пакета на устройстве позволяла иметь практически неограниченный архив данных.

С появлением магнитных дисков началась история систем управления данными во внешней памяти. До этого каждая прикладная программа, которой требовалось хранить данные во внешней памяти, сама определяла расположение каждой порции данных на магнитной ленте или барабане и выполняла обмены между оперативной памятью и устройствами внешней памяти с помощью программно-аппаратных средств низкого уровня (машинных команд или вызовов соответствующих программ операционной системы). Такой режим работы не позволяет или очень затрудняет поддержание на одном внешнем носителе нескольких архивов долговременно хранимой информации. Кроме того, каждой прикладной программе приходилось решать проблемы именования частей данных и структуризации данных во внешней памяти.

Файловые системы.

Файловая система - это часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совместное использование файлов несколькими пользователями и процессами.

Историческим шагом явился переход к использованию централизованных систем управления файлами. С точки зрения прикладной программы, файл - это именованная область внешней памяти, в которую можно записывать и из которой можно считывать данные. Правила именования файлов, способ доступа к данным, хранящимся в файле, и структура этих данных зависят от конкретной системы управления файлами и, возможно, от типа файла. Система управления файлами берет на себя распределение внешней памяти, отображение имен файлов в соответствующие адреса во внешней памяти и обеспечение доступа к данным.

В широком смысле понятие "файловая система" включает:

· совокупность всех файлов на диске,

· наборы структур данных, используемых для управления файлами, такие, например, как каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске,

· комплекс системных программных средств, реализующих управление файлами, в частности: создание, уничтожение, чтение, запись, именование, поиск и другие операции над файлами.

Имена файлов.

Файлы идентифицируются именами. Пользователи дают файлам символьные имена, при этом учитываются ограничения ОС как на используемые символы, так и на длину имени. До недавнего времени эти границы были весьма узкими. Так в популярной файловой системе FAT длина имен ограничивается известной схемой 8.3 (8 символов - собственно имя, 3 символа - расширение имени), а в ОС UNIX System V имя не может содержать более 14 символов. Однако пользователю гораздо удобнее работать с длинными именами, поскольку они позволяют дать файлу действительно мнемоническое название, по которому даже через достаточно большой промежуток времени можно будет вспомнить, что содержит этот файл. Поэтому современные файловые системы, как правило, поддерживают длинные символьные имена файлов. Например, Windows NT в своей новой файловой системе NTFS устанавливает, что имя файла может содержать до 255 символов, не считая завершающего нулевого символа.

При переходе к длинным именам возникает проблема совместимости с ранее созданными приложениями, использующими короткие имена. Чтобы приложения могли обращаться к файлам в соответствии с принятыми ранее соглашениями, файловая система должна уметь предоставлять эквивалентные короткие имена (псевдонимы) файлам, имеющим длинные имена. Таким образом, одной из важных задач становится проблема генерации соответствующих коротких имен.

Длинные имена поддерживаются не только новыми файловыми системами, но и новыми версиями хорошо известных файловых систем. Например, в ОС Windows 95 используется файловая система VFAT, представляющая собой существенно измененный вариант FAT. Среди многих других усовершенствований одним из главных достоинств VFAT является поддержка длинных имен. Кроме проблемы генерации эквивалентных коротких имен, при реализации нового варианта FAT важной задачей была задача хранения длинных имен при условии, что принципиально метод хранения и структура данных на диске не должны были измениться.

Обычно разные файлы могут иметь одинаковые символьные имена. В этом случае файл однозначно идентифицируется так называемым составным именем, представляющем собой последовательность символьных имен каталогов. В некоторых системах одному и тому же файлу не может быть дано несколько разных имен, а в других такое ограничение отсутствует. В последнем случае операционная система присваивает файлу дополнительно уникальное имя, так, чтобы можно было установить взаимно-однозначное соответствие между файлом и его уникальным именем. Уникальное имя представляет собой числовой идентификатор и используется программами операционной системы. Примером такого уникального имени файла является номер индексного дескриптора в системе UNIX.

Все современные файловые системы поддерживают многоуровневое именование файлов за счет поддержания во внешней памяти дополнительных файлов со специальной структурой - каталогов. Каждый каталог содержит имена каталогов и/или файлов, содержащихся в данном каталоге. Таким образом, полное имя файла состоит из списка имен каталогов плюс имя файла в каталоге, непосредственно указывающем на данный файл. Разница между способами именования файлов в разных файловых системах состоит в том, с чего начинается эта цепочка имен.

Имеются два крайних варианта. Во многих системах управления файлами требуется, чтобы каждый архив файлов (полное дерево справочников) целиком располагался на одном дисковом пакете (или логическом диске, разделе физического дискового пакета, представляемом с помощью средств операционной системы как отдельный диск). В этом случае полное имя файла начинается с имени дискового устройства, на котором установлен соответствующий диск. Такой способ именования используется в файловых системах фирмы DEC, очень близко к этому находятся и файловые системы персональных компьютеров. Можно назвать эту организацию поддержанием изолированных файловых систем.

Другой крайний вариант был реализован в файловых системах операционной системы Multics. Эта система заслуживает отдельного большого разговора, в ней был реализован целый ряд оригинальных идей, но мы остановимся только на особенностях организации архива файлов. В файловой системе Miltics пользователи представляли всю совокупность каталогов и файлов как единое дерево. Полное имя файла начиналось с имени корневого каталога, и пользователь не обязан был заботиться об установке на дисковое устройство каких-либо конкретных дисков. Сама система, выполняя поиск файла по его имени, запрашивала оператора об установке необходимых дисков. Такую файловую систему можно назвать полностью централизованной.

Конечно, во многом централизованные файловые системы удобнее изолированных: система управления файлами принимает на себя больше рутинной работы. Но в таких системах возникают существенные проблемы, если кому-то требуется перенести поддерево файловой системы на другую вычислительную установку.








Дата добавления: 2017-02-20; просмотров: 7049;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2026 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.