Нефтегазоносность фундаментов, кор выветривания, базальных горизонтов и «древних» осадочных комплексов платформ

 

 

Проявления и промышленные залежи нефти и газа известны в породах фундаментов и базальных горизонтов осадочных бассейнов США, Венесуэлы, Ливии, Марокко, Египта, Австрии, Югославии, Венгрии, стран СНГ, Китая и в недрах других государств.

Фундаменты тектонотипов платформенных областей, краевых и подвижных систем характеризуются разными по составу и возрасту комплексами пород. Углеводородные скопления выявлены в гнейсах, сланцах, кварцитах и прочих метаморфитах, вулканогенных образованиях и, конечно, в гранитоидах и корах их выветривания. Подсчитано, что к последним приурочено около 40% от числа залежей, открытых в фундаментах, а если учесть их объем, то с гранитоидами связано более 3/4 запасов углеводородов в фундаментах.

Когда рассматриваются вопросы нефтегазоносности пород фундамента, сопутствующих им кор выветривания и базальных горизонтов чехла, обычно основное внимание сосредотачивается на роли зон разломов в формировании коллекторов и залежей УВ. Приводятся примеры разных по строению месторождений нефти и газа, нефте- и битумопроявлений, выходов горючих газов так или иначе приуроченных к системам глубинных нарушений, закономерно делящих земную кору на разновеликие блоки. В современной геологической структуре планеты часть таких блоков лишена осадочного покрова и на дневной поверхности выступает в виде щитов и массивов, сложенных комплексами кристаллических пород, другая часть блоков перекрыта осадками разного состава, толщина которых изменяется в зависимости от условий их развития и гипсометрического положения, и на дневной поверхности проявляется в виде тектонических элементов различного масштаба и морфологии. Активные гидротермальные и дегазационные процессы протекают в зонах разломов не только континентов, но и в рифтовых системах срединно-океанических хребтов, чаще всего лишенных осадочного слоя.

Таким образом, зоны глубинных разломов, особенно обновленные современными движениями, - “кровеносная система”, по которой происходит флюидо- и теплообмен в земной коре, способствующий генерации УВ и их последующему онтогенезу. С разломами во многом связаны процессы формирования зон нефтегазонакопления, резервуаров и залежей нефти и газа, а также пространственное размещение последних.

И.М. Шахновский, развивая эти положения, рассматривает условия нефтегазоносности пород фундамента. Он отмечает, что в блоках фундамента, перекрытых отложениями чехла, нефтегазоносность чаще всего приурочена к коре выветривания, мощность которой достигает 50-80 м, но обычно не превышает 10-15 м. Для образующихся здесь вторичных коллекторов характерны сложные причудливые очертания и резкая изменчивость свойств в пространстве. Для резервуаров, формирующихся в зонах разломов, характерна линейная форма. Соответственно коллекторы в корах выветривания подразделяются на площадные, линейные и смешанного типа. Автор приводит характеристики месторождений с залежами нефти и газа в различных по составу, мощности и глубине залегания корах выветривания молодых и древних фундаментов. Это месторождения, открытые в Центральном Техасе США (Орф и др.), Венесуэле (Ла-Пас, Мара), Алжире (Хасси-Мессауд), Казахстане (Оймаши) и другие.

К.Е. Веселов и И.Н. Михайлов приводят статистические данные о месторождениях нефти и газа, открытых в породах фундамента в Австралии, на островах Тихого океана, в Азии, Африке, Европе, Америке. Обычно наблюдается плановое соответствие нефтегазоносных площадей в фундаменте и в осадочном чехле; редко скопления УВ обнаруживаются только в фундаменте. Авторы акцентируют внимание на теоретических аспектах поисков залежей нефти и газа на больших глубинах в породах фундамента. Они считают, что в фундаменте существуют развитые, постоянно обновляемые, горизонтальные и вертикальные системы трещин, которые в пределах платформ отражают их сложную многопорядковую разломно-трещинно-блоковую структуру. Образование последней объясняется с позиций тектоники глобального рифтогенеза. По мнению авторов этой концепции гармонично сочетаются фиксистские и мобилистские представления о тектогенезе, позволяющие обоснованно рассмотреть развитие земной коры и образование ее трещинно-блоковой делимости. Особое внимание уделяется трещинообразованию. В зависимости от масштабов его проявления системы трещин могут соединять не только разные горизонты осадочного чехла, но и проникать глубоко в породы фундамента, способствовать миграции флюидов и формированию залежей УВ в геологической среде, традиционно считавшейся неперспективной. Трещинно-блоковое строение коры приводит к тому, что в зависимости от местоположения одни и те же породы могут быть как монолитно-непроницаемыми, так и хорошими вторичными коллекторами, пористость которых определяется трещиноватостью и действием разных физико-химических процессов.

Авторы заключают - все известные в породах фундамента месторождения нефти и газа - не случайность (хотя в подавляющем большинстве своем открыты они случайно!), а проявление определенной закономерности, позволяющей предполагать на больших глубинах огромные скопления УВ. Основными объектами поисков должны стать трещинно-разломно-блоковые структуры континентальной коры, которые должны иметь большие вертикальные и ограниченные горизонтальные размеры. Трещинообразование в твердых породах и на больших глубинах - широко распространенный геологический процесс, способствующий нефтегазонакоплению.

В.Л. Шустер приводит сведения (состав пород, запасы и дебит скважин, толщина нефтенасыщенной части разреза, коллекторские свойства) о некоторых нефтяных и газовых месторождениях, открытых в кристаллических породах на территории Ливии, Египта, Индии, Бразилии, Венесуэлы, США и Казахстана. Месторождения, как правило, многопластовые, залежи частично или полностью литологически и (или) тектонически экранированы, располагаются в нормально осадочных породах и в трещиноватых гнейсах, гранитах, гранодиоритах, гранофирах, порфиритах фундаментов разного возраста.

Автор полагает, что комплексы пород фундаментов Западно-Сибирской плиты, Сибирской платформы, на территории арктических и северо-восточных морей, Дальнего Востока могут быть новыми перспективными объектами поисков залежей нефти и газа.

С его точки зрения формирование скоплений УВ в пределах фундамента обязано взаимодействию двух встречных потоков: глубинных паров, газов и тепла, стремящихся снизу из недр земли и охлажденного органического минерального вещества, опускающегося сверху в недра. Миграции флюидов и возникновению термобарических условий для образования УВ способствуют зоны проницаемости, приуроченные к глубинным разломам. Разломы также контролируют образование разных структур и связанных с ними ловушек, преобразование плотных гранитоидов в трещиноватые, распространение коллекторов и покрышек. Эти требования, по мнению автора, отвечают условиям нефтегазонакопления как в кристаллических породах фундамента, так и в отложениях чехла. А генезис УВ для промышленного использования нефти и газа существенного значения не имеет.

Нефтяные месторождения, связанные с коллекторами в гранитоидах, известны в России, Казахстане, Ливии, Китае, Индии, США, Канаде. Подавляющее большинство их приурочено к зонам выветривания небольшой мощности.

На этом “фоне” показательны строение и условия нефтеносности месторождения Белый Тигр, расположенного в Меконгской (Кыулонгской) впадине на шельфе Южного Вьетнама. На месторождении изначально продуктивным считался кайнозойский осадочный чехол, в котором нефтеносными являются песчаники нижнего олигоцена и нижнего миоцена, пока в 1988 г. в “свежих” мезозойских гранитоидах фундамента не была открыта уникальная нефтяная залежь. Здесь сосредоточено до 70% начальных геологических запасов категорий С12. Исключителен объем нефтенасыщенных гранитоидов - высота залежи свыше 1300 м и высоки значения фильтрационных свойств пород, что позволяет получать из них более 90% общей добычи нефти. И это при том, что скважинами, пробуренными на глубины свыше 5000 м, ВНК (в общепринятом толковании) так и не установлен!

Структура месторождения Белый Тигр представляет собой горстообразное поднятие, разновеликие блоки которого образовались в период активизации палеогеновых движений вдоль конседиментационных сбросов северо-восточного простирания. Амплитуда их по поверхности фундамента 1500-1600 м и более, в чехле она понижается и в отложениях верхнего олигоцена уже не превышает 400-500 м; смещения по другим сбросам редко достигают 150-200 м.

По кровле фундамента поднятие четко делится на три основных части блока, представленных Южным, Центральным (наиболее приподнятым) и Северным сводами, которым, в свою очередь, свойственна более дробная делимость. Размерность поднятия: длина - несколько десятков километров, ширина и высота - более 1.5 км, отметка замка - 4650 м. Мощность кайнозойского чехла изменяется от 3000 м на поднятых блоках и до 8000 м в пределах опущенных блоков. Фундамент сложен гранитами, гранодиоритами, кварцевыми монцдиоритами и диоритами; коэффициенты монопородности блоков - 0.73; 0.57 и 0.8. Характерны дайки и лавовые покровы (диабазы, базальты и т.п.) над фундаментом.

Емкостные и фильтрационные свойства обусловлены вторичной пустотностью трещинного, каверно-трещинного и блокового типов; на приточность флюида наиболее сильно влияет трещиноватость пород.

Нефтяная залежь “разбита” по блокам фундамента на разных гипсометрических уровнях и экранируется верхне- и нижнеолигоценовыми глинисто-аргиллитовыми породами мощностью от 5-20 до 40-60 м, на участках, где покрышка маломощна, притоки нефти обычно невелики или отсутствуют. Здесь, возможно, происходит переток УВ из пород фундамента в отложения нижнего олигоцена. Максимальная глубина доказанного нефтенасыщения - 4350 м, предполагаемого - 4650 м. Нефтеносность пород фундамента установлена и на других структурах Меконгской впадины - блоки Дракон, Тамдао, Баден, Биви, крупные запасы прогнозируются на месторождении Дайхунг в Южно-Коншонской впадине.

О.А. Шнип, рассмотрев условия нефтегазоносности фундаментов, предлагает геологические критерии оценки перспектив пород фундамента на нефть и газ:

1. Гранитоиды – наиболее вероятная группа пород фундамента, способная аккумулировать и сохранять промышленные скопления углеводородов.

2. Пути миграции флюидов связаны с трещиновато-разломными зонами и с другими системами пустотного пространства, которые могут возникать в фундаменте.

3. Коллекторы в фундаменте образуются под влиянием разрывной тектоники и гипергенных воздействий, которые способствуют образованию пустотного пространства в любых породах.

4. Покрышками залежей нефти и газа в фундаменте служат горизонты непроницаемых пород осадочного чехла. Изолирующими комплексами могут быть и непроницаемые породы фундамента.

5. Приуроченность промышленных скоплений нефти и газа к фундаментам осадочных бассейнов.

6. Размещение скоплений углеводородов в выступах фундамента, возвышающихся над его кровлей на десяти, сотни и более метров.

7. Углеводородные включения в минералах гранитоидов.

8. Глубины залегания пород фундамента от 3.5 до 4.3 км.

9. Наличие зон нефтегазообразования на доступном для миграции углеводородов расстояния.

В.Л. Шустер, Ю.Г. Такаев, охарактеризовав строение месторождений нефти и газа в кристаллических образованиях Америки, Африки, Европы, Австралии, Азии, Китая, Индонезии и Вьетнама, также останавливаются на проблеме критериев оценки нефтегазоносности. Ссылаясь на известных авторов, давно занимающихся вопросами нефтегазоносности пород фундаментов и древних толщ. (Е.Р. Алиева и др., 1987; Е.В. Кучерук, 1991; Б.П. Кабышев, 1991; Р. Шерифф, 1980, 1987; и др.), они указывают следующие показатели нефтегазоносности фундаментов:

- залегание скоплений углеводородов в фундаментах ниже региональных поверхностей несогласия;

- резкая расчлененность рельефа фундамента;

- глубина залегания или нахождения скоплений углеводородов в фундаменте не может превышать глубины подошвы осадочного слоя в депрессиях бассейнов;

- структурный фактор (наиболее перспективны валы и выступы фундамента), в т.ч. наличие зон разломов;

- гидрогеологические условия сохранности скоплений нефти и газа;

- наличие пустотности в кристаллических породах.

Анализ предложенных критериев и показателей оценки нефтегазоносности пород фундаментов разных тектонотипов показывает, что большая часть их принципиально не отличается от признаков и условий нефтегазоносности и набора тектонических, литологических, гидрогеологических и геохимических показателей и критериев нефтегазонакопления и сохранности залежей углеводородов, обычно применяемых для оценки перспектив осадочных басейнов на нефть и газ. И в фундаменте, и в чехле в конечном счете главное – коллектор и покрышка! В формировании ловушек углеводородов важнейшую роль играют разломно-блоковые структуры, которые обусловили эрозионно-тектонический рельеф и региональные поверхности несогласия. И, кроме того, разломно-блоковые (межблоковые!) системы безусловно контролируют размещение в земной коре львиной доли месторождений нефти и газа.

Тектонический фактор в совокупности процессов, определяющих геологическую среду и ее нефтегазоносность, является ведущим. Именно тектогенез обусловливает развитие различных по масштабу, строению и возрасту осадочных нефтегазоносных бассейнов и их зональное распределение в земной коре. Его роль проявляется на всех уровнях прогноза и поиска месторождений нефти и газа. При этом тектонический режим, формируя (слоисто-) блоковую структуру бассейна, контролирует образование и размещение УВ в разрезе и по площади территории. Интенсивность и направленность структуроформирующих движений прямо или опосредованно воздействуют на обстановку и масштабы осадконакопления, степень изменения пород, тип и характер преобразования ОВ, области питания и разгрузки пластовых вод, изменение во времени геотермического градиента, региональные направления перетока флюидов и на другие процессы, сопровождающие или определяющие нефтегазоносность.

Установлен факт блокового контроля над формированием и размещением многих полезных ископаемых. Вполне очевидно, что глубинные нарушения, составляющие основу межблоковых (граничных) систем, представляют собой зоны подвижного сочленения разделяемых ими блоков и обусловливают определенную их автономность и специфику нефтегазоносности.

Как правило, блоковые и межблоковые системы более контрастно проявляются в структуре фундамента и нижней части осадочного чехла, чем в его верхней. На дневной поверхности они часто отражены складчатыми (пликативными) структурными формами (валы, прогибы и т.п.), нередко контролируемыми конседиментационными разломами.

В этом смысле показательно, например, строение восточной части Русской платформы, где на территории Башкортостана выделены регионально протяженные конседиментационные грабенообразные прогибы, контролирующие линейно выраженные зоны нефтегазонакопления. Образование таких прогибов наглядно демонстрирует Е.В.Лозин, оперирующий палеотектоническими реконструкциями. Используя в качестве основной карту мощности кыновско-пашийской толщи осадков, он выявляет сложную знакопеременную колебательную обстановку формирования региональных наклонов территории, рассматривает возможный механизм и геохронологическую последовательность образования грабенообразных прогибов, выраженных в современном плане. Автор прослеживает связь механизма их образования с древней рифтовой структурой рифея-венда и указывает на структурные предпосылки формирования возможных зон нефтегазонакопления, обусловленные блоковыми движениями. Эти предпосылки вполне могут быть применимы и к другим территориям платформы, где предполагается нефтегазоносность древних толщ.

Д.Л.Федоров, обращаясь к проблеме нефтегазоносности древних толщ Русской платформы, задается вопросом о причинах, по которым в додевонской мощной толще осадочных пород промышленные скопления УВ до сих пор не обнаружены. В поисках ответа на него он рассматривает структурно-тектонические условия, стратиграфию венд-кембрийского комплекса, более изученного, чем рифейские отложения, признаки нефтегазоносности (притоки докембрийских нефтей, полученные в скважинах Даниловской площади в центральной части Московской синеклизы, на территории Удмуртии, Башкортостана, Кировской и Пермской областей - площади Очер, Сива, Соколовская и др.), нефтематеринские породы (нефтематеринский потенциал и время его реализации; черные аргиллиты - “вендский доманик” и темноцветные глины, обогащенные битумоидами, Московской синеклизы), коллекторы и покрышки (соответственно песчаные и глинистые пачки венд-кембрийского комплекса в Московской и Мезенской синеклизах; наиболее регионально выдержанная покрышка - глинистые отложения редкинской (усть-пинежской) свиты), ловушки (структурная и литологическая дифференциация древних толщ предполагает формирование ловушек разных типов). Автор считает, что тектонотипом ловушек, связанных с блоковым строением Камско-Бельского, Среднерусского, Московского и других авлакогенов, могут быть ловушки Юрубчено-Тохомской зоны нефтегазонакопления в рифейских и вендских отложениях Сибирской платформы. Обобщая результаты анализа предпосылок нефтегазоносности древних толщ Русской платформы, Д.Л.Федоров, несмотря на фрагментарность изученности проблемы, приходит к выводу о наличии всех критериев вероятной продуктивности, присущих нефтегазоносным бассейнам; важно лишь найти зоны их благоприятного сочетания .

Тимано-Печорская НГП характеризуется в плане чередованием дислоцированных мобильных зон и относительно просто построенных стабильных областей. Структуры осадочного чехла повторяют вверх по разрезу в сглаженной форме основные черты строения фундамента, расчлененного глубинными разломами на блоки. Различные конфигурация, размеры и ориентировка поднятых и сопряженных с ними опущенных блоков обусловили глыбово-блоковое строение в стабильных областях и линейно-блоковое в мобильных зонах. Стабильные геоблоки в большей степени нефтеносные, мобильные – газоносные.

Несомненно тектоническая активность блоков влияет на их нефтегазоносность. И это, конечно, обусловлено двумя главными видами показателей, группы признаков которых характеризуют как структуру собственно блоков, так и перекрывающих их отложений чехла, в которых находятся нефтегазоносные объекты - НГК разной масштабности.

К тектонически активным - мобильным блокам приурочено более половины (56%) выявленных месторождений и залежей (65%). С ними связана значительная часть крупных и крупнейших по геологическим запасам месторождений. Большая часть потенциальных ресурсов УВ: нефти до 70%, газа около 90% - сосредоточена в пределах мобильных геоблоков, где концентрация в среднем в 3-3.5 раза выше, чем в стабильных.

Мобильные мегаблоки характеризуются набором общих черт нефтегазоносности, хотя при детальном сравнении их между собой отмечаются определенные отклонения. Показательным в качестве примера является Предуральский мегаблок, отличающийся аномальным строением земной коры. В осадочном чехле, перекрывающим мегаблок, концентрируется более половины прогнозных ресурсов газа НГП. Эта величина может быть обусловлена сравнительной молодостью высокоинтенсивных ловушек и приуроченных к ним залежей, что в свою очередь объясняется своеобразным геодинамическим режимом мегаблока в заключительные стадии развития Тимано-Печорского бассейна.

В Тимано-Печорском бассейны границы ОНГО в стратиграфическом диапазоне нижнего силура - нижней перми и (или) резкой смены их продуктивности в целом также совпадают с границами крупных долгоживущих блоков земной коры. При этом наибольшая продуктивность характеризует блоки, испытавшие в геологической истории длительное устойчивое погружение - вне зависимости от их последующей инверсии - Предуральский прогиб, Печоро-Колвинский авлакоген, Варандей-Адзъвинская зона (в последней продуктивность ОНГО несколько меньше в следствие менее последовательного, менее устойчивого погружения, иногда сменявшегося подъемом). Размещение ЗНГН в бассейне также в основном подчиняется двум направлениям, ограничивающим основные блоки: субтиманскому и субуральскому; при этом ЗНГН, как правило, отвечают либо самым крупным линейным блокам, после длительного погружения претерпевшим частичную инверсию (Колвинский мегавал, Лайский вал и другие), либо границам крупных линейных блоков (Шапкино-Юряхский вал, вал Сорокина и другие).

В каждом НГБ выделяется “главный цикл” развития, в течение которого формируются основные характеристики этого бассейна и накапливаются “главные мощности” осадков (Т.К.Баженова, 1995 г.).

В Тимано-Печорском бассейне “главный цикл” - от начала среднего девона до конца раннего триаса (390-210=180 млн. лет). Первый цикл III порядка (в 45 млн. лет) в “главном цикле” именуется “главной седиментацией”, она содержит существенную долю осадков и как бы “задает тон” всему бассейну. “Главная седиментация - средний девон - турнейский век раннего карбона (D21t). В эпоху “главной седиментации” НГБ отличался высокой степенью дифференциации. Заложились и сформировались авлакогены. Высокая степень дифференциации сначала дала толчок накоплению песчаных горизонтов среднего девона, а затем выделила в бассейне рифогенные и иловые зоны позднего девона, что, в свою очередь, и создало весьма благоприятные предпосылки нефтегазоносности.

В результате анализа распределения прогнозных ресурсов нефти и газа установлены корреляционные зависимости между строением блоков консолидированной земной коры и структурой перекрывающих их образований осадочного чехла. При прогнозе нефтегазоносности на региональном, зональном и, частично, на локальном уровнях должно учитываться не только строение собственно осадочного тела, слагающего НГБ и его отдельные части, но и всей толщи земной коры и происходящих в ней процессов, в той или иной степени влияющих на характер нефтегазоносности осадочной оболочки и стадий онтогенеза УВ, происходящих в ней.

В Прикаспийской впадине на всех этапах ее развития прослеживаются дискретные дифференцированные движения блоков фундамента, отраженные в осадочном чехле. Унаследованность древнего структурного плана доказана бурением на таких поднятиях как Тенгиз и Карачаганак, приуроченных к приподнятым блокам фундамента. К пограничным зонам блоков впадины могут быть приурочены разнотипные тектонически экранированные ловушки, а также надразломные и приразломные локальные поднятия. Обобщение материалов, накопленных украинскими геологами в результате поисков нефти и газа в Днепрово-Донецкой впадине, Причерноморье, Крыму, Волыно-Подолии и других районах Украины, позволило им охарактеризовать роль разломной тектоники в формировании нефтегазоносных провинций (НГП) и областей (НГО), размещении зон нефтегазонакопления и месторождений УВ.

Интерес к нефтегазоносности ристаллического фундамента, а, соответственно и к блоковому его строению значительно возрос в связи с обнаружением «… сначала на площади Ахтырского нефтепромыслового района в Сумской области (скв. Хухринская – 1), а затем на участке Юльевской зоны в Харбковской оюласти в нескольких скважинах были обнаружены промышленные скопления нефти и газа, сосредоточенные непосредственно в верхних частях кристаллического фундамента на глубине более 250 м от его поверхности».

Примечателен вывод об участках Днепрово-Донецкой впадины, наиболее благоприятных для концентрации нефти и газа, тяготеющих к зонам долго живущих региональных разломов в основном северо-западного (3050-3150) и северо-восточного (350-450) направлений и к узлам их пересечений.

Анализ данных ГСЗ по Западно-Сибирской плите и степени консолидации земной коры в ее пределах позволяет выделить блоки, разграниченные глубинными разломами, выявить их связь с верхней мантией, рассмотреть строение осадочного чехла и распределение месторождений нефти и газа в зависимости от типа блока. Большинство месторождений приурочено к блокам, которым соответствуют останцы древних складчатых комплексов, минимальное количество месторождений расположено в пределах блоков, соответствующих положению грабен-рифтов и зонам глубокой тектонической переработки. Наиболее отчетливо блоковое строение выражено в домезозойском основании плиты. Типичным примером блоковой структуры является Малоичский палеозойский выступ, расположенный в Нюрольской впадине. Он состоит из различных по величине блоков, разделенных разломами. Скважины, давшие притоки и фонтаны нефти, расположены в разных блоках, в основном наиболее приподнятых. Скважины, пробуренные непосредственно в зонах разломов, притоков обычно не дают. Рассматривая другие подобные примеры, можно сделать вывод - “... разломы не только способствуют проникновению УВ в породы-коллекторы, но и могут быть причиной расформирования залежей при последующих тектонических подвижках”. Обобщение материалов по Западной Сибири в целом показало, что для формирования скоплений УВ в осадочных отложениях земной коры имеют значение преимущественно длительно развивавшиеся “открытые” глубинные разломы. “Залеченные” разломы, заполненные минеральным веществом, не могли быть путями вертикального перемещения УВ.

Блоковая делимость литосферы – главный контролирующий фактор размещения полезных ископаемых в земной коре. Вполне вероятно и то, что блоковая делимость литосферы определяет генетические условия образования и формирования минеральных и энергетических полезных ископаемых.

 








Дата добавления: 2018-03-01; просмотров: 1298;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.