Реляционная модель данных

Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение.

В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД – реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй – на классическом логическом аппарате исчисления предикатов первого порядка. Основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.

В целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД. Первое требование называется требованием целостности сущностей. Объекту или сущности реального мира в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом. Это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений.

Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что при соблюдении нормализованности отношений сложные сущности реального мира представляются в реляционной БД в виде нескольких кортежей нескольких отношений. Например, представим, что требуется представить в реляционной базе данных сущность ОТДЕЛ с атрибутами ОТД_НОМЕР (номер отдела), ОТД_КОЛ (количество сотрудников) и ОТД_СОТР (набор сотрудников отдела). Для каждого сотрудника нужно хранить СОТР_НОМЕР (номер сотрудника), СОТР_ИМЯ (имя сотрудника) и СОТР_ЗАРП (заработная плата сотрудника). При правильном проектировании соответствующей БД в ней появятся два отношения: ОТДЕЛЫ (ОТД_НОМЕР, ОТД_КОЛ) (первичный ключ – ОТД_НОМЕР) и СОТРУДНИКИ (СОТР_НОМЕР, СОТР_ИМЯ, СОТР_ЗАРП, СОТР_ОТД_НОМ) (первичный ключ – СОТР_НОМЕР).

Как видно, атрибут СОТР_ОТД_НОМ появляется в отношении СОТРУДНИКИ не потому, что номер отдела является собственным свойством сотрудника, а лишь для того, чтобы иметь возможность восстановить при необходимости полную сущность ОТДЕЛ. Значение атрибута СОТР_ОТД_НОМ в любом кортеже отношения СОТРУДНИКИ должно соответствовать значению атрибута ОТД_НОМ в некотором кортеже отношения ОТДЕЛЫ. Атрибут такого рода называется внешним ключом, поскольку его значения однозначно характеризуют сущности, представленные кортежами некоторого другого отношения (т.е. задают значения их первичного ключа). Говорят, что отношение, в котором определен внешний ключ, ссылается на соответствующее отношение, в котором такой же атрибут является первичным ключом.

Требование целостности по ссылкам, или требование внешнего ключа состоит в том, что для каждого значения внешнего ключа, появляющегося в ссылающемся отношении, в отношении, на которое ведет ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (т.е. ни на что не указывать). Для примера это означает, что если для сотрудника указан номер отдела, то этот отдел должен существовать.

Ограничения целостности сущности и по ссылкам должны поддерживаться СУБД. Для соблюдения целостности сущности достаточно гарантировать отсутствие в любом отношении кортежей с одним и тем же значением первичного ключа. С целостностью по ссылкам дела обстоят несколько более сложно.

Понятно, что при обновлении ссылающегося отношения (вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа. Но как быть при удалении кортежа из отношения, на которое ведет ссылка?

Здесь существуют три подхода, каждый из которых поддерживает целостность по ссылкам:

1. Запрещается производить удаление кортежа, на который существуют ссылки (т.е. сначала нужно либо удалить ссылающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа).

2. При удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится неопределенным.

3. При удалении кортежа из отношения, на которое ведет ссылка, из ссылающегося отношения автоматически удаляются все ссылающиеся кортежи (каскадное удаление).

В развитых реляционных СУБД обычно можно выбрать способ поддержания целостности по ссылкам для каждой отдельной ситуации определения внешнего ключа. Конечно, для принятия такого решения необходимо анализировать требования конкретной прикладной области.

 

Модель «сущность-связь» также полезна для понимания и спецификации ограничений, направленных на поддержание целостности данных. В модели имеется три типа ограничений на значения:

· ограничения на допустимые значения в наборе значений (домене). Домен можно трактовать как область определения атрибута, которая может быть задана либо непрерывным или дискретным интервалом, либо фиксированным списком значений.

· ограничения на разрешенные значения для каждого атрибута. Например, возраст сотрудников может быть ограничен интервалом от 18 до 65 лет.

· ограничения на существующие значения в базе данных. Например, сумма отчислений с зарплаты сотрудника не должна превышать самой зарплаты.

К сожалению, указанные ограничения невозможно представить на диаграмме «сущность-связь».

 

Пример

Реляционные базы данных состоят из таблиц. Каждая таблица состоит из столбцов (их называют полями или атрибутами) и строк (их называют записями или кортежами). Таблицы в реляционных базах данных обладают рядом свойств. Основными являются следующие:

· В таблице не может быть двух одинаковых строк. В математике таблицы, обладающие таким свойством, называют отношениями (англ. relation), отсюда и название – реляционные.

· Столбцы располагаются в определенном порядке, который создается при создании таблицы. В таблице может не быть ни одной строки, но обязательно должен быть хотя бы один столбец.

· У каждого столбца есть уникальное имя (в пределах таблицы), и все значения в одном столбце имеют один тип (число, текст, дата...).

· На пересечении каждого столбца и строки может находиться только атомарное значение (одно значение, не состоящее из группы значений). Таблицы, удовлетворяющие этому условию, называют нормализованными.

Предположим, что необходимо создать базу данных для форума. У форума есть зарегистрированные пользователи, которые создают темы и оставляют сообщения в этих темах. Эта информация и должна храниться в базе данных. Теоретически (на бумаге) можно все это расположить в одной таблице, например, так:

Но это противоречит свойству атомарности (одно значение в одной ячейке), а в столбцах Темы и Сообщения предполагается неограниченное количество значений. Значит, таблицу надо разбить на три: Пользователи, Темы и Сообщения.

Таблица Пользователи удовлетворяет всем условиям. А вот таблицы Темы и Сообщения – нет. Ведь в таблице не может быть двух одинаковых строк, а где гарантия, что один пользователь не оставит два одинаковых сообщения, например:

Кроме того известно, что каждое сообщение обязательно относится к какой-либо теме. А как это можно узнать из данных таблиц? Никак. Для решения этих проблем, в реляционных базах данных существуют ключи. Первичный ключ (РК – primary key) – столбец, значения которого во всех строках различны. Первичные ключи могут быть логическими (естественными) и суррогатными (искусственными). Так, для таблицы Пользователи первичным ключом может стать столбец e-mail (ведь теоретически не может быть двух пользователей с одинаковым e-mail). На практике лучше использовать суррогатные ключи, т.к. их применение позволяет абстрагировать ключи от реальных данных. Кроме того, первичные ключи менять нельзя, а что если у пользователя сменится e-mail? Суррогатный ключ представляет собой дополнительное поле в базе данных. Как правило, это порядковый номер записи (хотя можно задавать их на свое усмотрение, контролируя, чтобы они были уникальны). Внесем поля первичных ключей в таблицы:

Теперь каждая запись в таблицах уникальна. Осталось установить соответствие между темами и сообщениями в них. Делается это также при помощи первичных ключей. В таблицу сообщения добавим еще одно поле:

Теперь понятно, что сообщение с id = 2 принадлежит теме «О рыбалке» (id темы = 4), созданной Васей, а остальные сообщения принадлежать теме «О рыбалке» (id темы = 1), созданной Кириллом. Такое поле называется внешний ключ (FK – foreign key). Каждое значение этого поля соответствует какому-либо первичному ключу из таблицы «Темы». Так устанавливается однозначное соответствие между сообщениями и темами, к которым они относятся. Последний нюанс. Предположим, что добавился новый пользователь, и зовут его тоже Вася:

Как узнать, какой именно Вася оставил сообщения? Для этого поля «Автор» в таблицах «Темы» и «Сообщения» сделаем также внешними ключами:

База данных готова. Схематично ее можно представить так:

В данной маленькой базе данных всего три таблички, а если бы их было 10 или 100? Понятно, что сразу невозможно представить все таблицы, поля и связи, которые могут понадобиться. Именно поэтому проектирование базы данных начинается с ее концептуальной модели (ER-модели).








Дата добавления: 2018-03-01; просмотров: 1067;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.