Регрессионный анализ. 2 страница

Симплекс – простейший выпуклый многогранник, образованный к+1 вершинами в к-мерном пространстве, которые соединены между собой прямыми линиями. При этом координаты вершин симплекса являются значениями факторов в отдельных опытах. В двухфакторном пространстве (на плоскости) к=2 симплекс – любой треугольник, в трехфакторном пространстве (трехмерном) к=3 – тетраэдр.

После построения исходного симплекса и проведения опытов при значениях факторов, соответствующим координатам его вершин, анализируют результаты и выбирают вершину симплекса, в которой получено наименьшее значение функции отклика. Для движения к оптимуму необходимо поставить опыт в новой точке, являющейся зеркальным отражением точки с наихудшим результатом относительно противоположной грани симплекса.

 

Рисунок 4.8 – Симплексный метод

По итогам проведения опытов 1,2 и 3 худшим оказался 3 опыт. Следующим ставится опыт 4, который образует с точками 1 и 2 новый правильный симплекс. Наихудший результат получен в точке 1, поэтому она в новом симплексе заменяется зеркальным отображением точки 5 и т.д. пока не будет достигнута почти стационарная область.

 

4.5.2 Полиноминальные модели

 

Исходя из выбранной стратегии, ясно, что главное требование к модели – это способность предсказывать направление дальнейших опытов, причем предсказывать с требуемой точностью. Так как до получения модели мы не знаем, какое направление нам понадобится, то естественно требовать, чтобы точность предсказания во всех возможных направлениях была одинакова.

Это значит, что в некоторой подобласти, в которую входят и координаты выполненных опытов, предсказанное с помощью модели значение отклика не должно отличаться от фактического больше чем на некоторую заранее заданную величину. Модель, которая удовлетворяет такому или какому-либо аналогичному требованию, называется адекватной. Проверка выполнимости этого требования называется проверкой адекватности модели. Методы, с помощью которых проверяется адекватность, рассматриваются далее.

Если несколько различных моделей отвечают нужным требованиям, то следует предпочесть ту из них, которая является самой простой.

На будущее мы договоримся, что при прочих равных условиях мы всегда будем предпочитать степенные ряды. Точнее, отрезки степенных рядов – алгебраические полиномы.

Фактически мы произвели выбор класса моделей. Мы сказали, что всегда, когда это возможно, будем искать модель среди полиномов. Построение полинома возможно в окрестностях любой точки факторного пространства, поскольку мы предположили, что функция является аналитической.

Мы представили неизвестную нам функцию отклика полиномом. Операция замены одной функции другой в каком-то смысле эквивалентной функцией называется аппроксимацией. Значит, мы аппроксимировали неизвестную функцию полиномом.

Но полиномы бывают разных степеней. Какой взять на первом шаге?

Эксперимент нужен только для того, чтобы найти численные значения коэффициентов полинома. Поэтому чем больше коэффициентов, тем больше опытов окажется необходимым. А мы стремимся сократить их число. Значит, надо найти такой полином, который содержит как можно меньше коэффициентов, но удовлетворяет требованиям, предъявленным к модели. Чем ниже степень полинома при заданном числе факторов, тем меньше в нем коэффициентов.

Мы хотим, чтобы модель хорошо предсказывала направление наискорейшего улучшения параметра оптимизации. Такое направление называется направлением градиента. Ясно, что движение в этом направлении приведет к успеху быстрее, чем движение в любом другом направлении (это значит, что будет достигнута экономия числа опытов).

 

Полином первой степени – линейная модель – это то, что нам нужно.

 

С одной стороны, он содержит информацию о направлении градиента, с другой – в нем минимально возможное число коэффициентов при данном числе факторов. Единственное опасение в том, что неясно, будет ли линейная модель всегда адекватной. Ответ зависит еще и от объекта.

Вопрос в том, как выбрать подобласть в факторном пространстве, чтобы линейная модель оказалась адекватной. Условие аналитичности функции отклика гарантирует нам эту возможность. Всегда существует такая окрестность любой точки (точнее, почти любой точки), в которой линейная модель адекватна.

Размер такой области заранее не известен, но адекватность можно проверять по результатам эксперимента. Значит, выбрав сначала произвольную подобласть, мы, рано или поздно, найдем ее требуемые размеры, И как только это случится, воспользуемся движением по градиенту.

На следующем этапе мы будем искать линейную модель уже в другой подобласти. Цикл повторяется до тех пор, пока движение по градиенту не перестанет давать эффект. Это значит, что мы попали и область, близкую к оптимуму. Такая область называется «почти стационарной». Здесь линейная модель уже не нужна. Либо попаданием в почти стационарную область задача решена, либо надо переходить к полиномам более высоких степеней, например второй степени, чтобы подробнее описать область оптимума.

Удачный выбор подобласти имеет большое значение для успеха всей работы. Он связан с интуитивными решениями, которые принимает экспериментатор на каждом этапе.

Кроме задачи оптимизации, иногда возникает задача построения интерполяционной модели. В этом случае нас не интересует оптимум. Просто мы хотим предсказывать результат с требуемой точностью во всех точках некоторой заранее заданной области. Тут не приходится выбирать подобласть. Необходимо последовательно увеличивать степень полинома до тех пор, пока модель не окажется адекватной. Если адекватной оказывается линейная, или неполная квадратная модель (без членов, содержащих квадраты факторов), то ее построение аналогично тому, что требуется для оптимизации.

 

4.6 Полный факторный эксперимент – ПФЭ

 

Принятие решений перед планированием эксперимента

 

При выборе области эксперимента должны учитываться следующие соображения.

Прежде всего, надо оценить границы областей определения факторов. При этом должны учитываться ограничения нескольких типов.

Первый тип: принципиальные ограничения для значений факторов, которые не могут быть нарушены ни при каких обстоятельствах. Например, если фактор – температура, то нижним пределом будет абсолютный нуль.

Второй тип – ограничения, связанные с технико-экономическими соображениями, например, со стоимостью сырья, дефицитностью отдельных компонентов, временем ведения процесса.



Третий тип ограничений, с которым чаще всего приходится иметь дело, определяется конкретными условиями проведения процесса, например, существующей аппаратурой, технологией, организацией. В реакторе, изготовленном из некоторого материала, температуру нельзя поднять выше температуры плавления этого материала или выше рабочей температуры данного катализатора.

Оптимизация обычно начинается в условиях, когда объект уже подвергался некоторым исследованиям. Информацию, содержащуюся в результатах предыдущих исследований, будем называть априорной (т.е. полученной до начала эксперимента). Мы можем использовать априорную информацию для получения представления о параметре оптимизации, о факторах, о наилучших условиях ведения процесса и характере поверхности отклика, т.е. о том, как сильно меняется параметр оптимизации при небольших изменениях значений факторов, а также о кривизне поверхности. Для этого можно использовать графики (или таблицы) однофакторных экспериментов, осуществлявшихся в предыдущих исследованиях или описанных в литературе. Если однофакторную зависимость нельзя представить линейным уравнением (в рассматриваемой области), то в многомерном случае, несомненно, будет существенная кривизна. Обратное утверждение, к сожалению, не очевидно.

Итак, выбор экспериментальной области факторного пространства связан с тщательным анализом априорной информации.

 

4.6.1 Выбор основного уровня.

 

Наилучшим условиям, определенным из анализа априорной информации, соответствует комбинация (или несколько комбинаций) уровней факторов. Каждая комбинация является многомерной точкой в факторном пространстве. Ее можно рассматривать как исходную точку для построения плана эксперимента. Назовем ее основным (нулевым) уровнем. Построение плана эксперимента сводится к выбору экспериментальных точек, симметричных относительно нулевого уровня.

В разных случаях мы располагаем различными сведениями об области наилучших условий. Если имеются сведения о координатах одной наилучшей точки и нет информации о границах определения факторов, то остается рассматривать эту точку в качестве основного уровня. Аналогичное решение принимается, если границы известны и наилучшие условия лежат внутри области.

Положение усложняется, если эта точка лежит на границе (или весьма близко к границе) области. Тогда приходится основной уровень выбирать с некоторым сдвигом от наилучших условий.

Может случиться, что координаты наилучшей точки неизвестны, но есть сведения о некоторой подобласти, в которой процесс идет достаточно хорошо. Тогда основной уровень выбирается либо в центре, либо в случайной точке этой подобласти. Сведения о подобласти можно получить, анализируя изученные ранее подобные процессы, из теоретических соображений или из предыдущего эксперимента.

Наконец, возможен случай с несколькими эквивалентными точками, координаты которых различны. Когда отсутствуют дополнительные данные (технологического, экономического характера и т.д.), выбор произволен. Конечно, если эксперимент недорог и требует немного времени, можно приступить к построению планов экспериментов вокруг нескольких точек.

Резюмируем наши рассуждения о принятии решений при выборе основного уровня в виде блок-схемы

 

Рисунок 4.9 – Схема выбора основного уровня

После того как нулевой уровень выбран, переходим к следующему шагу – выбору интервалов варьиро­вания.

Теперь наша цель состоит в том, чтобы для каждого фактора выбрать два уровня, на которых он будет варьироваться в эксперименте.

Интервалом варьирования факторов называется некоторое число (свое для каждого фактора), прибавление которого к основному уровню дает верхний, а вычитание – нижний уровни фактора. Другими словами, интервал варьирования – это расстояние на координатной оси между основным и верхним (или нижним) уровнем. Таким образом, задача выбора уровней сводится к более простой задаче выбора интервала варьирования.

Заметим еще, что для упрощения записи условий эксперимента и обработки экспериментальных данных масштабы по осям выбираются так, чтобы верхний уровень соответствовал +1, нижний –1, а основной – нулю. Для факторов с непрерывной областью определения это всегда можно сделать с помощью преобразования (4.12).

 

, (4.12)

 

где xj – кодированное значение фактора;

– натуральное значение фактора;

– натуральное значение основного уровня;

Ij – интервал варьирования;

j – номер фактора.

Для качественных факторов, имеющих два уровня, один уровень обозначается +1, а другой –1; порядок уровней не имеет значения.

На выбор интервалов варьирования накладываются естественные ограничения сверху и снизу. Интервал варьирования не может быть меньше той ошибки, с которой экспериментатор фиксирует уровень фактора. Иначе верхний и нижний уровни окажутся неразличимыми. С другой стороны, интервал не может быть настолько большим, чтобы верхний или нижний уровни оказались за пределами области определения. Внутри этих ограничений обычно еще остается значительная неопределенность выбора, которая устраняется с помощью интуитивных решений.

Обратите внимание, что при решении задачи оптимизации мы стремимся выбрать для первой серии экспериментов такую подобласть, которая давала бы возможность для шагового движения к оптимуму. В задачах же интерполяции интервал варьирования охватывает всю описываемую область.

Выбор интервалов варьирования – задача трудная, так как она связана с неформализованным этапом планирования эксперимента. Возникает вопрос, какая априорная информация может быть полезна на данном этапе? Это – сведения о точности, с которой экспериментатор фиксирует значения факторов, о кривизне поверхности отклика и о диапазоне изменения параметра оптимизации. Обычно эта информация является ориентировочной (в некоторых случаях она может оказаться просто ошибочной), но это единственная разумная основа, на которой можно начинать планировать эксперимент. В ходе эксперимента ее часто приходится корректировать.

Точность фиксирования факторов определяется точностью приборов и стабильностью уровня в ходе опыта. Для упрощения схемы принятия решений мы введем приближенную классификацию, полагая, что есть низкая, средняя и высокая точности. Можно, например, считать, что поддержание температуры в реакторе с погрешностью не более 1% соответствует высокой, не более 5% – средней, а более 10% – низкой точности.

Источником сведений о кривизне поверхности отклика могут служить уже упоминавшиеся графики однофакторных зависимостей, а также теоретические соображения. Из графиков сведения о кривизне можно получить визуально. Некоторое представление о кривизне дает анализ табличных данных, так как наличию кривизны соответствует непропорциональное изменение параметра оптимизации при равномерном изменении фактора. Мы будем различать три случая: функция отклика линейна, функция отклика существенно нелинейна и информация о кривизне отсутствует.

Наконец, полезно знать, в каких диапазонах меняются значения параметра оптимизации в разных точках факторного пространства. Если имеются результаты некоторого множества опытов, то всегда можно найти наибольшее или наименьшее значения параметра оптимизации. Разность между этими значениями будем называть диапазоном изменения параметра оптимизации для данного множества опытов. Условимся различать широкий и узкий диапазоны. Диапазон будет узким, если он не существенно отличается от разброса значений параметра оптимизации в повторных опытах (этот разброс определяет ошибку опыта). В противном случае будем считать диапазон широким. Учтем также случай, когда информация отсутствует. Итак, для принятия решений используется априорная информация о точности фиксирования факторов, кривизне поверхности отклика и диапазоне изменения параметра оптимизации. Каждое сочетание градаций перечисленных признаков определяет ситуацию, в которой нужно принимать решение. При принятых градациях возможно 33 = 27 различных ситуаций. Они представлены на рис. 3, 4, 5 в виде кружочков, цифры в которых соответствуют порядковым номерам ситуаций.

Теперь мы приблизились к принятию решения о выборе интервалов варьирования. Для интервалов также введем градацию. Будем рассматривать:

- широкий;

- средний;

- узкий интервалы варьирования;

- случай, когда трудно принять однозначное решение.

Размер интервала варьирования составляет некоторую долю от области определения фактора. Можно, например, условиться о следующем: если интервал составляет не более 10% от области определения, считать его узким, не более 30% – средним, и в остальных случаях – широким. Это, конечно, весьма условно, и в каждой конкретной задаче приходится специально определять эти понятия, которые зависят не только от размера области определения, но и от характера поверхности отклика и от точности фиксирования факторов.

Перейдем к рассмотрению блок-схем принятия решений. На первой схеме (рисунок 4.10) представлены девять ситуаций, имеющих место при низкой точности фиксирования факторов. При выборе решений учитываются информация о кривизне поверхности отклика и о диапазоне изменения параметра оптимизации. Типичное решение – широкий интервал варьирования, узкий интервал варьирования совершенно не используется, что вполне понятно при низкой точности.

Средний интервал варьирования в этой схеме выбирается дважды, причем в девятой ситуации как редко применяемая альтернатива. Здесь отсутствует информация об обоих признаках и выбор широкого интервала представляется более естественным.

Наибольшие трудности возникают, когда поверхность отклика нелинейна. Появляется противоречие между низкой точностью фиксирования факторов и кривизной. Первая требует расширения интервала, а вторая – сужения. Решение оказывается неоднозначным. Как поступить? Приходится рассматривать дополнительные рекомендации. Прежде всего, нужно выяснить, нельзя ли увеличить точность эксперимента либо за счет инженерных решений, либо за счет увеличения числа повторных опытов. Если это возможно, то решения принимаются на основе блок-схемы (рисунок 4.11) для средней точности фиксирования факторов. Если это невозможно, то для принятия решения нет достаточных оснований и оно становится интуитивным.

Эта блок-схема, как и последующие, служит весьма грубым приближением к действительности. На практике учитывается ещё масса обстоятельств. Например, решения, принимаемые по каждому фактору в отдельности, корректируются при рассмотрении совокупности факторов.

Рисунок 4.10 – Низкая точность фиксирования факторов

 

Рисунок 4.11 – Средняя точность фиксирования факторов

Рисунок 4.12– Высокая точность фиксирования факторов

На рисунке 4.11 изображена блок-схема для случая средней точности фиксирования фактора. Характерен выбор среднего интервала варьирования. Лишь в случае нелинейной поверхности и широкого диапазона рекомендуется узкий интервал варьирования. При сочетаниях линейной поверхности с узким диапазоном и отсутствием информации о диапазоне выбирается широкий интервал варьирования. Пунктиром, как и выше, показаны редко применяемые альтернативы.

Наконец, на рисунке 4.12 построена блок-схема для случая высокой точности фиксирования фактора. Сочетание высокой точности с нелинейностью поверхности всегда приводит к выбору узкого интервала. Довольно часто выбирается средний интервал и лишь в двух случаях широкий. В обеих последних блок-схемах отсутствуют неоднозначные решения.

 

4.6.2 Полный факторный эксперимент.

 

 

Первый этап планирования эксперимента для получения линейной модели основан на варьировании факторов на двух уровнях. В этом случае, если число факторов известно, можно сразу найти число опытов, необходимое для реализации всех возможных сочетаний уровней факторов. Простая формула, которая для этого используется, уже приводилась, для двух уровней она выглядит, следующим образом:

 

N = 2k, (4.13)

 

где N – число опытов;

k – число факторов;

2 – число уровней.

В общем случае эксперимент, в котором реализуются всевозможные сочетания уровней факторов, называется полным факторным экспериментом. Если число уровней каждого фактора равно двум, то имеем полный факторный эксперимент типа 2k.

Нетрудно написать все сочетания уровней в эксперименте с двумя факторами. Напомним, что в планировании эксперимента используются кодированные значения факторов: +1 и –1 (часто для простоты записи единицы опускают). Условия эксперимента можно записать в виде таблицы 4.2, где строки соответствуют различным опытам, а столбцы – значениям факторов. Будем называть такие таблицы матрицами планирования эксперимента.

Таблица 4.2 - Матрица планирования для двух факторов

№ опыта x1 x2 y
-1 -1 Y1
+1 -1 Y2
-1 +1 Y3
+1 +1 Y4

Каждый столбец в матрице планирования называют вектор-столбцом, а каждую строку – вектор-строкой. Таким образом, мы имеем 2 вектор-столбца независимых переменных и один вектор-столбец параметра оптимизации.

Если для двух факторов все возможные комбинации уровней легко найти прямым перебором (или просто запомнить), то с ростом числа факторов возникает необходимость в некотором приеме построения матриц. Из многих возможных обычно используется три приема, основанные на переходе от матриц меньшей размерности к матрицам большей размерности. Рассмотрим первый. При добавлении нового фактора каждая комбинация уровней исходного плана встречается дважды: в сочетании с нижним и верхним уровнями нового фактора. Отсюда естественно появляется прием: записать исходный план для одного уровня нового фактора, а затем повторить его для другого уровня. Вот как это выглядит при переходе от эксперимента 22 к 23, таблица (4.3).

Таблица 4.3 - Матрица планирования для трех факторов

№ опыта x1 x2 x3 y
+ + + Y1
- + + Y2
+ - + Y3
- - + Y4
+ + - Y5
- + - Y6
+ - - Y7
- - - Y8

Этот прием распространяется на построение матриц любой размерности.

Рассмотрим второй прием. Для этого введем правило перемножения столбцов матрицы. При построчном перемножении двух столбцов матрицы произведение единиц с одноименными знаками дает +1, а с разноименными –1. Воспользовавшись этим правилом, получим для случая, который мы рассматриваем, вектор-столбец произведения x1x2 в исходном плане. Далее повторим еще раз исходный план, а у столбца произведений знаки поменяем на обратные. Этот прием тоже можно перенести на построение матриц любой размерности, однако он сложнее, тем первый.

Третий прием основан на правиле чередования знаков. В первом столбце знаки меняются поочередно, во втором столбце они чередуются через два, в третьем – через 4, в четвертом – через 8 и т. д. по степеням двойки.

 

4.6.3 Свойства полного факторного эксперимента типа 2k

 

Мы научились строить матрицы планирования полных факторных экспериментов с факторами на двух уровнях. Теперь выясним, какими общими свойствами эти матрицы обладают независимо от числа факторов. Говоря о свойствах матриц, мы имеем в виду те из них, которые определяют качество модели. Ведь эксперимент и планируется для того, чтобы получить модель, обладающую некоторыми оптимальными свойствами. Это значит, что оценки коэффициентов модели должны быть наилучшими и что точность предсказания параметра оптимизации не должна зависеть от направления в факторном пространстве, ибо заранее неясно, куда предстоит двигаться в поисках оптимума.

Два свойства следуют непосредственно из построения матрицы.

Первое свойство – симметричность относительно центра эксперимента – формулируется следующим образом: алгебраическая сумма элементов вектор-столбца каждого фактора равна нулю, формула (4.14).

 

, (4.14)

 

где j – номер фактора;

N – число опытов;

i = 1, 2, ..., k .

Второе свойство – так называемое условие нормировки – формулируется следующим образом: сумма квадратов элементов каждого столбца равна числу опытов (4.15)

 

. (4.15)

 

Это следствие того, что значения факторов в матрице задаются +1 и –1.

Это свойства отдельных столбцов матрицы планирования. Теперь остановимся на свойстве совокупности столбцов. Сумма почленных произведений любых двух вектор-столбцов матрицы равна нулю, или (4.16).

 

, (4.16)

 

где u, j = 0, 1, 2 … k.

Третье свойство называется ортогональностью матрицы планирования.

Последнее, четвертое свойство называется ротатабельностью, т. е. точки в матрице планирования подбираются так, что точность предсказания значений параметра оптимизации одинакова на равных расстояниях от центра эксперимента и не зависит от направления.

 

4.6.2 Полный факторный эксперимент и математическая модель.

 

 

Для движения к точке оптимума нам нужна линейная модель

 

y = b0 + b1x1 + b2x2. (4.17)

 

Наша цель – найти по результатам эксперимента значения неизвестных коэффициентов модели b0, b1 и b2. До сих пор, говоря о линейной модели, мы не останавливались на важном вопросе о статистической оценке ее коэффициентов. Теперь необходимо сделать ряд замечаний по этому поводу. Можно утверждать, что эксперимент проводится для проверки гипотезы о том, что линейная модель формула (4.18) адекватна.

 

η = β0 + β1x1 + β2x2. (4.18)

 

Греческие буквы использованы для обозначения «истинных» генеральных значений соответствующих неизвестных. Эксперимент, содержащий конечное число опытов, позволяет только получить выборочные оценки для коэффициентов уравнения y = b0 + b1x1 + b2x2 + …+ bkxk. Их точность и надежность зависят от свойств выборки и нуждаются в статистической проверке. Как производится такая проверка, будет показано ниже. А пока займемся вычислением оценок коэффициентов. Их можно вычислить по простой формуле (4.19) обоснование которой будет приведено ниже.

 

, (4.19)

 

тогда

 

, (4.20)

, (4.21)

. (4.22)

 

Воспользуемся формулой (4.19) для подсчёта коэффициентов b1 и b2.

 

, (4.23)

. (4.24)

 

Благодаря кодированию факторов расчет коэффициентов превратился в простую арифметическую процедуру. Для подсчета коэффициента b1 используется вектор-столбец х1, а для b2 – столбец x2. Остается неясным, как найти b0. Если уравнение (4.17) справедливо, то оно верно и для средних арифметических значений переменных (4.25):

 

. (4.25)

 

Но в силу свойства симметрии (4.14) Следовательно, . Мы показали, что b0 есть среднее арифметическое значений параметра оптимизации. Чтобы его получить, необходимо сложить все y и разделить на число опытов. Чтобы привести, эту процедуру в соответствие с формулой для вычисления коэффициентов, в матрицу планирования удобно ввести вектор-столбец фиктивной переменной x0, которая принимает во всех опытах значение +1. Это было уже учтено в записи формулы, где j принимало значения от 0 до k.

Теперь у нас есть все необходимое, чтобы найти неизвестные коэффициенты линейной модели (4.17).

Коэффициенты при независимых переменных указывают на силу влияния факторов. Чем больше численная величина коэффициента, тем большее влияние оказывает фактор. Если коэффициент имеет знак плюс, то с увеличением значения фактора параметр оптимизации увеличивается, а если минус, то уменьшается. Величина коэффициента соответствует вкладу данного фактора в величину параметра отклика при переходе фактора с нулевого уровня на верхний или нижний.

Иногда удобно оценивать вклад фактора при переходе от нижнего уровня к верхнему уровню. Вклад, определенный таким образом, называется вкладом фактора (иногда его называют основным или главным эффектом). Он численно равен удвоенному коэффициенту. Для качественных факторов, варьируемых на двух уровнях, основной уровень не имеет физического смысла. Поэтому понятие «эффект фактора» является здесь естественным.

<== предыдущая лекция | следующая лекция ==>
Регрессионный анализ. 1 страница | Регрессионный анализ. 3 страница


Дата добавления: 2017-12-05; просмотров: 117; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2018 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.025 сек.