Физиология мышечного сокращения. Мышечные рефлексы. Механика скелетно-мышечной системы

Нервные импульсы приводят к сокращению мышечных волокон. Соединение между мышечным волокном и двигательным нервом известно как нейромышечное соединение, и именно здесь осуществляется взаимодействие между нервом и мышцей. Нервный импульс передается на нервные окончания, называемые синаптическим окончанием аксона, рядом с сарколеммой. В таких окончаниях содержатся тысячи пузырьков, наполненных нейромедиатором ацетилхолином (АХ). Когда нервный им­пульс достигает синаптического окончания аксона, сотни этих пузырьков высвобождают свой АХ, также и АХ открывает каналы, в которых происходит рассеивание ионов натрия (Na+). Потенциал покоя неактивного мышечного волокна составляет примерно - 95 мВ. Инфлюкс ионов натрия уменьшает заряд, создавая потенциал концевой пластинки. Если потенциал концевой пластинки достигает порогового значения потенциала (примерно - 50 мВ), ионы натрия попадают в поток, вследствие чего внутри волокна создается потенциал действия.

В мышечном волокне не происходит видимых перемен во время (и сразу после) потенциала действия. Этот период, называемый латентным, длится от 3 до 10 мс. Перед окончанием латентного периода фермент ацетилхолинэстераза (АХЭ) расщепляет АХ в нейромышечном соединении, натриевые каналы закрываются, и поле очищается в ожидании следующего нервного импульса. Потенциал покоя волокна восстанавливается путем оттока ионов калия из возбужденной клетки. Короткий период, требуемый для восстановления потенциала покоя, называется рефрактерным периодом.

Так каким же образом укорачивается мышечное волокно? Этот механизм можно лучше всего объяснить при помощи теории скользящих нитей (Huxley & Hanson, 1954), согласно которой мышечные волокна получают нервный импульс (см. выше), что приводит к выделению ионов кальция, сосредоточенных в саркоплазматическом ретикулуме (СР). Чтобы мышцы работали эффективно, нужна энергия, которая создается в результате распада аденозинтрифосфата (АТФ). Такая энергия позволяет ионам кальция связываться с филаментами актина и миозина для формирования магнитной связи, в результате чего волокна укорачиваются, вызывая сокращение мышц. Мышечное действие продолжается вплоть до истощения запасов кальция, после чего кальций начинает возвращаться в СР, где он будет храниться до следующего нервного импульса.

Мышечные рефлексы. В скелетных мышцах содержатся специальные сенсорные единицы, восприимчивые к удлинению (укорачиванию) мышцы. Такие сенсорные единицы называются мышечным веретеном и нервно-сухожильным веретеном (сухожильным органом Гольджи), они важны для обнаружения изменений в длине мышцы, реагирования на такие изменения и для их регулирования.

Мышечные веретена состоят из спиральных нитей, которые называются интрафузальными мышечными волокнами, а также нервных окончаний, расположенных внутри оболочки соединительной ткани для регулирования скорости удлинения мышцы. Если мышца удлиняется слишком быстро, сигналы, поступающие из интрафузальных мышечных волокон, уведомят об этом нервную систему через спин­ной мозг, чтобы нервный импульс был отправлен обратно, вызывая тем самым сокращение мышцы. Сигналы постоянно направляют в мышцу и из мышцы информацию, касающуюся положения и силы (проприорецепция).

Кроме того, когда мышца удлиняется и удерживается в таком положении, сократительная реакция будет сохраняться до тех пор, пока растянута мышца. Такой механизм известен как дуга разгибательного рефлекса. Мышечные веретена будут стимулироваться во время проведения растяжения мышцы.

Классический клинический пример разгибательного рефлекса — коленный рефлекс, который предполагает активацию рецептора растяжения сухожилия, что вызывает рефлекторное сокращение прикрепленной мышцы, то есть четырехглавой мышцы.

В то время как мышечные веретена контролируют длину мышцы, сухожильные органы Гольджи (СОГ) настолько чувствительны к напряжению в мышечно-сухожильном комплексе, что могут отреагировать на сокращение единичного мы­шечного волокна. СОГ по своей природе являются ингибирующими, выполняя защитную функцию и снижая риск травмы. При получении стимуляции СОГ ингибируют (тормозят) сокращающиеся мышцы (агонисты) и возбуждают мышцы-антагонисты.

Механика скелетно-мышечной системы. В большинстве случаев скоординированные движения предполагают прикрепление скелетной мышцы, которая остается в относительно стационарном состоянии с одной стороны и двигается с другой стороны места прикрепления. Проксимальное, стационарное прикрепление считается источником, а более дистальное, подвижное прикрепление считается вставкой. (В любом случае в настоящее время предпочтительнее употреблять именно выражение «место прикрепления» вместо «источник» и «вставка», поскольку мышцы устроены таким образом, что любой конец мышцы может двигаться или быть зафиксирован в зависимости от ситуации.)

В большинстве случаев движение требует задействования определенной мышечной силы, генерируемой мышцами-агонистами (или первичной движущей силой), которые в первую очередь отвечают за движение и обеспечивают большую часть силы, необходимой для осуществления движения. В движении также принимают участие мышцы-антагонисты, которые, удлиняясь, гарантируют движение, производимое первичной движущей силой, и выполняют защитную функцию. Кроме того, потребуется участие и мышц-синергистов (известных как стабилизаторы), помогающих первичной движущей силе и также порой участвующих в корректировке направления движения. Простым примером является сгибание локтевого сустава, требующее укорачивания плечевой мышцы и двуглавой мышцы плеча (первичная движущая сила) и расслабления трехглавой мышцы плеча (антагонист). Плечелучевая мышца выступает в качестве мышцы-синергиста, помогая плечевой и двуглавой мышцам плеча.

Мышечное движение можно разделить на три типа сокращений: концентрические, эксцентрические и статические (изометрические). Во время большинства видов деятельности, например во время бега, занятий пилатесом и йогой, могут наблюдаться все типы сокращений для обеспечения плавного и скоординированного движения.

Скелетные мышцы можно разделить на два типа:

1. Стабилизирующие мышцы фактически стабилизируют сустав. Они состоят из медленно сокращающихся волокон для обеспечения выносливости, а также способствуют удержанию положения. В свою очередь, их можно подразделить на первичные стабилизирующие мышцы, которые характеризуются очень глубо­кими креплениями и располагаются вблизи оси вращения сустава, и вторичные стабилизирующие мышцы, которые представляют собой очень сильные мышцы, способные поглощать большое количество силы. Стабилизирующие мышцы противодействуют силе тяжести и часто с течением времени становятся слабее и длиннее (Norris, 1998). В качестве примера можно привести многораздельную мышцу, поперечную мышцу живота (первичные), а также большую ягодичную мышцу и большую приводящую мышцу (вторичные).

2. Мобилизирующие мышцы отвечают за движение. Они считаются более поверхностными и менее сильными по сравнению со стабилизирующими мышцами, но при этом обеспечивают более широкую амплитуду движения. Как правило, они пересекают два сустава и состоят из быстросокращающихся волокон, которые отличаются силой, но лишены выносливости. Мобилизирующие мышцы способствуют быстрому, или баллистическому, движению и развивают высокую силу. С течением времени и по мере их использования они, как правило, твердеют и укорачиваются. В качестве примера можно привести подколенное сухожилие, грушевидную мышцу и ромбовидные мышцы.

Основная функция мышцы — ее укорачивание. Когда места прикрепления мышцы сближаются, это называется концентрическим сокращением. Поскольку происходит движение сустава, концентрические сокращения также можно считать динамическими. В качестве примера приведем удерживание предмета: при выполнении данного действия двуглавая мышца плеча сокращается концентрически, локтевой сустав сгибается, а рука поднимается вверх к плечу.

Движение считается эксцентрическим сокращением, если мышца может прилагать силу во время удлинения. Как и в случае с концентрическим сокращением, в результате движения сустава такое сокращение также можно считать динамическим. Филаменты актина все больше отдаляются от центра саркомера, эффективно его растягивая.

Когда мышца действует без движения, генерируется сила, но длина мышцы остается неизменной. Этот механизм называют статическим (изометрическим) сокращением.








Дата добавления: 2017-06-07; просмотров: 4136;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.