Метод неопределенных коэффициентов.

Этот метод рекомендуют применять при решении линейных дифференциальных уравнений с переменными коэффициентами. Суть метода покажем на примере уравнения второго порядка

с начальными условиями . Предположим, что каждый из коэффициентов уравнения можно разложить в ряд по степеням x:

, , .

Решение данного уравнения будем искать в виде ряда

, (9.3)

где - коэффициенты, подлежащие определению.

Дифференцируем обе части равенства (9.3) два раза по x:

, .

Подставляя полученные ряды для в уравнение , получим:

 

. (9.4)

Произведя умножение рядов и приравняв коэффициенты при одинаковых степенях x в левой и в правой частях тождества (9.4), получим систему

 

(9.5)

 

где означает линейную функцию аргументов .

Каждое уравнение системы (9.5) содержит на одно неизвестное больше по сравнению с предыдущим уравнением. Коэффициенты определяются из начальных условий, а все остальные последовательно определяются из системы (9.5). Доказано, что если ряды , , сходятся при , то полученный степенной ряд сходится в той же области и является решением уравнения

 

.

 

Пример 9.4 Найти решение уравнения с начальными условиями в виде степенного ряда. Ограничиться 6 членами ряда.

 

Разложим коэффициенты уравнения в соответствующие степенные ряды.

p(x)=-x q(x)=-1

Будем искать решение уравнения в виде ряда

y=c0+c1x+c2x2+ c3x3+ c4x4+…+cnxn+… тогда

 

y'=c1+2c2x+3c3x2+4c4x3+…+n cnxn-1+…

 

-y'x=-c1x-2c2x2-3c3x3-4c4x4-…- n cnxn+…

 

y''=2c2+6c3x+12c4x2+20c5x3+…+n(n-1) cnxn-2+…

 

Подставив полученные ряды в уравнение примера, и приравняв коэффициенты при одинаковых степенях, получим систему для определения ci .

c0=0, c1=1 возьмем из начальных условий.

 

x0 c0 + 2 c2 = 0,

x1 6 c3 = 0,

x2 – c2 + 12 c4 = ,

x3 – 2 c3 + 20 c5 = 0,

x4 – 3 c4 + 30 c6 = ,

x5 – 4 c5 + 42 c7 = 0,

x6 – 5 c6 + 56 c8 = .

 

Решая последовательно систему, получим, что нечетные коэффициенты нули, а

Приближенное решение задачи получаем в виде

 

Численные методы

Метод Эйлера

Рассмотрим дифференциальное уравнение

(9.6)

с начальным условием . Выбрав достаточно малый шаг h, построим систему равноотстоящих точек .

В методе Эйлера приближенные значения вычисляются по формулам . При этом искомая интегральная кривая , проходящая через точку , заменяется ломанной с вершинами ; каждое звено этой ломанной, имеет направление той интегральной кривой уравнения , которая проходит через точку .

Если правая часть уравнения в некотором замкнутом прямоугольнике удовлетворяет условиям

,

,

то имеет место следующая оценка погрешности:

,

где - значение точного решения уравнения при , а - приближенное значение, полученное на n-м шаге в этой же точке.

На практике, для оценки точности полученных результатов, применяют двойной пересчет: расчет повторяют с шагом и погрешность более точного значения в точке оценивают приближенно так:

 

Пример 9.5. Используя метод Эйлера, составить таблицу приближенных значений решения дифференциального уравнения с начальным условием y(0)=2 на отрезке [0;0.5] с шагом h с точностью до трёх знаков. Выполним это задание в Mathcad

Для этого разделим промежуток [a,b] на n частей и найдем шаг интегрирования h.

 

 

 

Разделим промежуток интегрирования на 2n частей и

пересчитаем значения yi с новым шагом h/2

 

 
 
 

 

 

 

 

Решением уравнения является таблица значений уi , найденных в точках отрезка [0;0.5] с шагом h=0,01 с точностью до трёх знаков.

 

Рис 9.1 Решение примера 9.5 в Mathcad методом Эйлера

 








Дата добавления: 2017-05-18; просмотров: 934;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.018 сек.