У. НАУТА, М. ФЕЙРТАГ 3 страница

Пока мы говорили о нисходящих нервных влияниях, которые в конечном счете достигают эффекторных тканей внутренних органов. А чем вызываются эти влияния? Или конкретнее: откуда и какие пути идут в гипоталамус? На рисунке (стр. 107) показан входной канал, который начинается в клетке ретикулярной формации среднего мозга — клетке, получающей свои входные сигналы от волокон спино-таламического тракта. Можно предположить, что при помощи этого пути таламус способен контролировать состояние внутренней среды. За пределами этого поиски входов в гипоталамус заводят далеко в область тканей мозга, причастных к эмоциям и побуждениям, область, в которой, скажем, эпилептические разряды могут, среди прочих симптомов, вызывать изменения в настроении, иногда до душевной боли или беспричинного страха. Это не должно нас удивлять. В конце концов эмоции и побуждения находят явное выражение в висцеральных и эндокринных изменениях.

Значит, можно почти не сомневаться в том, что основные влияния на гипоталамус со стороны полушарий большого мозга исходят из гиппокампа и миндалины. Они делят свою «власть» с малым числом других частей полушарий. По этой причине общая ссылка на гиппокамп и миндалину оправдана: они являются главными компонентами того, что называют лимбической системой. Обратите внимание на показанную на рисунке двухканальную систему волокон, которая закругляется по краю новой коры и идет из гиппокампа в гипоталамус. Этот пучок образует свод. Он проходит вдоль свободного края мозгового плаща. И у кошки, и у обезьяны примерно две трети волокон этого пучка при выходе из гиппокампа направляются прямым путем в гипоталамус. Оставшаяся треть устанавливает синаптические связи в перегородке, из которой, как показано на рисунке, пути направляются также в гипоталамус.

Мы уже указывали, что гиппокамп является станцией назначения для многоступенчатых проекций, которые размещены на обширной поверхности новой коры. Таким образом, при прослеживании путей управления висцеральной моторикой, как и в случае соматической моторики, оказывается, что по ходу прослеживания, если оно производится против течения, т. е. против направления передачи импульсов, приходится подключать к делу все большую часть великой промежуточной сети. Конечно, тут есть и отличие. Из данной области новой коры, скажем из первичной зрительной зоны, путь в гиппокамп может проходить с переключениями через ряд промежуточных неокортикальных полей. Концом неокортикального пути является энторинальная область коры большого мозга, смежная с гиппокампом и промежуточная по структуре между ним и новой корой. Выходящий отсюда последний отрезок завершает путь волокон в гиппокамп. В противоположность этому, путь в стриатум из любого поля новой коры является непрерывающимся.

Рассмотрим далее миндалину. Хотя по цитоархитектонике она сильно отличается от гиппокампа, значительная часть ее выходных волокон тоже направляется в гипоталамус. Для гипоталамуса миндалина - это место, куда сходятся волокна из областей новой коры, синаптически удаленных от каких-либо первичных сенсорных полей. Однако она также является и адресатом волокон, которые начинаются в обонятельной коре; действительно, сюда проецируется энторинальная область. Кроме того, часть миндалины получает волокна от обонятельной луковицы. Таким образом, в случае обоняния передача сенсорных сигналов в лимбическую систему осуществляется поразительно прямым путем. Почему бы это могло быть? Почему обонятельная система находится в привилегированном положении по отношению к другим сенсорным системам?

Один из возможных ответов заключается в следующем: вполне вероятно, что обонятельный сенсориум представляет собой самое раннее образование в эволюции способности к сенсорному восприятию на расстоянии; быть может, это самая ранняя система, с помощью которой свободно странствующий организм мог находить следы источников пищи и узнавать членов своего собственного вида и представителей других. Возможно, что обонятельная система, появившись раньше других, установила ряд относительно прямых связей. Второй предположительный ответ, не отвергающий первый, заключается в том, что зрительное опознание объекта (если взять только один пример) требует сложной переработки: в своей наивысшей форме оно требует, чтобы поступающие сенсорные данные обеспечивали представление, не зависящее от угла зрения, расстояния и освещения. Иначе как можно узнать объект, т.е. связать его с прошлым опытом? Даже в самых простых случаях, скажем при узнавании полос (например, когда одна рыба рассматривает бок другой) или движущейся точки (например, когда лягушка глядит на муху), оно требует хорошего представления в нервных сигналах топологических соотношений между входными сигналами, действующими на сенсорную поверхность — сетчатку. В противоположность этому обонятельная система функционирует просто как распознаватель градиентов интенсивности. Короче, обоняние как средство обеспечения необходимого для поддержания жизни поведения избавлено от многих вычислительных трудностей, которые внутренне присущи зрению и другим сенсориумам.

Конечно, аргументы такого рода могут показаться не очень убедительными. Если лимбическая система требует от зрительного, слухового и соматического сенсориумов многократных переключений в новой коре и, следовательно, каскада повторных представлений данных, которые первоначально были сенсорными, то почему это в той же степени не справедливо для стриатума? И почему, далее, в стриатум входят пути и из первичных сенсорных полей, и из различных ассоциативных областей, в которых первичные кортикальные данные претерпели последовательные трансформации? Возможно, основная трудность ответа на эти вопросы связана с непостижимым хаосом, творящимся в любой мозговой структуре, в которую тем или иным путем поступают сигналы со всей (или почти всей) площади новой коры. Охарактеризовать сколько-нибудь систематически поток информации в такую структуру кажется невозможным, и потому наше сознание отказывается вообразить, что же такая структура может делать с этим потоком. Тем не менее в центральной нервной системе представлено несколько таких структур: лимбическая система, стриатум, мост (и через его посредство — мозжечок) и верхнее двухолмие.

Наш обзор центральной нервной системы млекопитающих на этом подходит к концу. У него много недостатков, которых трудно избежать. Во-первых, он дает слабое представление об истинной сложности нервной сети; если бы в нем были упомянуты все известные системы проведения, рисунки к статье могли бы стать безнадежно запутанными. Так, мы не рассматривали варолиев мост, хотя этот отдел получает массивные пучки волокон от всех частей новой коры и посылает массивные пучки в мозжечок. Линии, представляющие эти пучки, пересекались бы с несколькими восходящими и нисходящими системами волокон заднего мозга.

Во-вторых, мы смогли лишь слабо отразить различия между путями, состоящими из миллионов волокон, и путями, в которых число волокон составляет лишь часть этого числа. Так, у приматов спино-таламический пучок, входящий в вентральное ядро таламуса, может насчитывать не более нескольких сотен волокон, тогда как медиальный лемниск содержит миллион волокон, если не больше. Кроме того, мы не имели возможности указать, какие из путей пересекают срединную плоскость и проходят на противоположную сторону центральной нервной системы, а какие имеют места назначения на той же стороне, из которой исходят. Центральная нервная система, как и остальная часть тела, билатерально симметрична. Различение прямых и перекрестных путей играет важную роль в клинической диагностике.

Более важно то, что, обратившись только к связям внутри мозга, а именно — только к происхождению и назначению различных систем волокон, мы можем создать лишь грубый набросок нейроанатомии и не более того, т.е. показать мозг как трехмерный тканевый комплекс, заключенный в черепе и спускающийся вниз по позвоночному каналу. Тем самым мы совсем не касаемся того, над чем человек мучительно размышляет в течение тысячелетий — самой таинственной сущности мозга.

У. КОУЭН

Развитие мозга

В период внутриутробного развития нейроны мозга человека образуются со скоростью сотен тысяч в минуту. Одна из проблем нейробиологии состоит в том, каким образом нейроны находят свое место и формируют надлежащие связи

Общие изменения мозга в процессе развития эмбриона и плода были описаны уже в прошлом столетии, однако до сих пор еще относительно мало известно о лежащих в их основе клеточных процессах, тех процессах, которые обеспечивают формирование отдельных частей мозга и их связей друг с другом. Ясно одно — это, что нервная система берет начало от пласта клеток на дорсальной поверхности развивающегося эмбриона (от нервной пластинки), что эта ткань складывается затем в удлиненную полую структуру (нервную трубку) и что на головном конце трубки выделяются три выпуклости, соответствующие трем главным частям мозга — переднему, среднему и заднему мозгу.

 

На электронной микрофотографии, полученной П. Ракичем из Медицинской школы Йельского университета, запечатлен момент миграции молодого нейрона у плода обезьяны от места появления в глубине мозжечка к месту назначения вблизи наружной поверхности развивающегося мозга. Мигрирующий нейрон - это более широкая из двух диагональных полос, проходящих через всю микрофотографию от левого верхнего угла до правого нижнего; вытянутое темное образование в верхней части полосы-ядро нервной клетки. Более светлая, узкая полоса, тянущаяся вдоль нижней границы нейрона,-это удлиненный отросток глиальной клетки, которая служит опорной структурой и ориентиром для мигрирующего нейрона. Нейрон движется через плотный нейропиль, или «войлок» из нервных волокон, расходящихся в разных направлениях. (Большинство округлых структур на фотографии являются поперечными срезами аксонов, расположенных более или менее перпендикулярно к плоскости снимка.) Хотя мигрирующий нейрон таким образом контактирует с тысячами других клеточных отростков, он остается тесно связанным именно с глиальной клеткой на протяжении всей ее длины.

 

Четырьмя парами рисунков, которые показывают внешний вид развивающегося зародыша (вверху) и соответствующие поперечные срезы на уровне середины будущего спинного мозга (внизу), иллюстрируется происхождение нервной системы из эктодермы, или наружного слоя клеток, зародыша человека на 3-й и 4-й неделе после зачатия. Центральная нервная система берет начало от нервной пластинки - плоского слоя эктодермальных клеток на дорсальной поверхности зародыша. Пластинка впоследствии замыкается в полую структуру, называемую нервной трубкой. Головной конец центрального канала расширяется, образуя желудочки, или полости, головного мозга. Периферическая нервная система формируется в основном из клеток нервного гребня и из волокон двигательных нервов, выходящих из нижних участков каждого сегмента будущего спинного мозга.

Однако не на этих изменениях внешней формы развивающегося мозга сконцентрировано внимание нейробиологов развития в последние годы. Ставятся более интересные вопросы. Как, к примеру, возникают различные составные элементы крупных частей нервной системы, как они занимают определенное положение внутри мозга, каким образом происходит дифференцировка нейронов и окружающих их глиальных клеток, как устанавливают связи друг с другом нейроны различных участков мозга? Несмотря на многочисленные попытки исследований в этих направлениях, еще невозможно дать полное описание развития какой-либо части мозга, и тем более мозга в целом. Определяя, однако, какие события являются главными в развитии нервной системы, можно рассчитывать на успешное решение этих кардинальных вопросов.

В развитии любой части мозга можно выделить восемь основных стадий. Последовательно это:
1) индукция нервной пластинки,
2) локализованное деление клеток в различных участках,
3) миграция клеток из зоны, в которой они возникли, к местам, где они останутся окончательно,
4) агрегация клеток, приводящая к формированию идентифицируемых участков мозга,
5) дифференцировка незрелых нейронов,
6) формирование связей с другими нейронами,
7) избирательная гибель некоторых клеток и
8) ликвидация одних ранее сформированных связей и стабилизация других.

 

В этой серии рисунков показано развитие мозга человека (вид сбоку) на эмбриональных стадиях и у плода. Рисунки основной серии (внизу) все приведены в одном масштабе. Первые пять эмбриональных стадий (вверху) проиллюстрированы увеличенными рисунками, чтобы яснее показать детали. Три основные части головного мозга (передний, средний и задний мозг) образуются как выпуклости головного конца нервной трубки. У людей полушария головного мозга со временем нарастают на средний и задний мозг, а также частично закрывают мозжечок. Характерные для головного мозга извилины и борозды не обнаруживаются до середины периода внутриутробного развития. Если предположить, что полностью развитый головной мозг содержит порядка 100 миллиардов нейронов и что после рождения фактически не добавляется новых нейронов, то можно вычислить, что в период развития нейроны должны образовываться со скоростью более чем 250000 в минуту.

Процесс, посредством которого часть клеток эктодермы, или наружного слоя развивающегося зародыша, превращается в специализированную ткань, в ткань, из которой развивается головной и спинной мозг, называется нейральной индукцией. С двадцатых годов нашего столетия известно, что определяющим событием для нейральной индукции является взаимодействие эктодермы и части лежащего под ней слоя ткани, называемого мезодермой. Природа этого взаимодействия остается неясной, но есть основания полагать, что оно включает в себя специфический перенос веществ из мезодермы в эктодерму и что в результате этого переноса недифференцированная ткань эктодермы оказывается необратимо вовлеченной в формирование нервной ткани. Ясно также, что последующее взаимодействие различных участков эктодермы и мезодермы приводит к пространственному детерминированию главных частей будущего головного и спинного мозга. Передняя часть мезодермы, входя в контакт с эктодермой, специфически индуцирует структуры переднего мозга, следующая за ней часть обеспечивает формирование структур среднего и заднего мозга, и, наконец, задняя ее часть, расположенная под эктодермой, ответственна за происходящее позднее формирование спинного мозга.

Многие детали процесса пространственной детерминации остаются неясными. Эксперименты с дезагрегированными эктодермальными и мезодермальными клетками из зародышей соответствующих стадий позволили предположить, что важным фактором для этого процесса является создание определенных относительных концентраций двух агентов, которые, вероятно, представляют собою низкомолекулярные белки. Один из них, нейрализующий агент, как бы подготавливает эктодерму к будущему превращению в нервные структуры, а другой — мезодермализующий агент, — присутствуя в варьирующих концентрациях, определяет региональные различия внутри эктодермы.

В 30-е и 40-е годы были сделаны многочисленные попытки выделить предполагаемые индуцирующие агенты, однако сегодня стало ясно, что эта работа была преждевременной. Только в последние два десятилетия существенно обогатились наши знания о природе генной индукции в целом, но и сейчас осталось далеко не ясным, являются ли механизмы индукции, обнаруженные у микроорганизмов, теми же, что и в животных клетках. Существует и другая причина того, почему проблема нейральной индукции трудно поддается решению. Единственной экспериментальной системой, доступной для изучения нейральной индукции, является эктодерма, выделенная у зародыша соответствующей стадии, при этом,, поскольку эктодерма способна отвечать на индуктивный стимул только в течение короткого периода развития, исследователям приходится работать с предельно малым количеством ткани. Нужно отдать дань изобретательности и экспериментальному искусству тех, кто взялся за эту проблему и благодаря кому уже достигнут такой большой прогресс.

По мере того как основные части нервной системы детерминируются, их потенции становятся все более и более ограниченными. К примеру, головной конец нервной пластинки представляет собой изначально переднемозговое - глазное поле, из которого впоследствии разовьются как передний мозг, так и нервные структуры глаза. Если на этой стадии удалить небольшой кусочек эктодермальной ткани, дефект будет быстро устранен за счет размножения соседних клеток, и развитие как переднего мозга, так и глаза пройдет совершенно нормально. Если ту же самую операцию произвести на несколько более поздней стадии, останется неустранимый дефект либо переднего мозга, либо глаза, в зависимости от локализации удаленного кусочка. Иными словами, на более поздней стадии удается с определенностью выделить поле переднего мозга, которое образует дефинитивные структуры переднего мозга, и глазное поле, которое образует только нервные структуры глаза.

На еще более поздних стадиях разграничиваются специализированные области внутри самого переднемозгового поля. С применением различных приемов маркирования клеток стало возможно начертить «карты судьбы» клеток, которые с достаточной точностью предсказывают окончательную локализацию клеток каждого участка раннего переднемозгового поля (см. рисунок на стр. 119). Факторы, приводящие к прогрессивному выделению все более и более мелких единиц, дающих начало специализированным частям мозга, неизвестны, но есть основания предполагать, что, когда мы будем больше знать о клеточной дифференцировке вообще, проблема эта прояснится.

Исследованиями зародышей амфибий установлено, что число клеток в их нервной пластинке относительно мало (порядка 125000), и оно почти не меняется в период формирования нервной трубки. Однако после того, как нервная трубка замыкается, размножение клеток возобновляется в быстром темпе, в результате чего пласт эпителиальных клеток, образующих, нервную пластинку, вскоре превращается в довольно толстый слой клеток, в котором клеточные ядра располагаются на различных уровнях. Микроскопическое исследование клеток, дополненное в ряде случаев введением радиоактивно меченного тимидина, предшественника ДНК, показало, что все клетки в стенке нервной трубки способны размножаться и что характерный вид «псевдонаслоения» эпителия создается благодаря тому, что ядра клеток лежат на разных уровнях. Ядра клеток синтезируют ДНК, когда они лежат в глубине эпителия, а перед делением они мигрируют к вентрикулярной поверхности и убирают свои периферические отростки. После митоза (клеточного деления) дочерние клетки вновь образуют отростки и их ядра возвращаются до возобновления митотического цикла в более глубокие области эпителиального слоя. Миграция ядер размножающихся нейронов весьма характерна для эпителиальных клеток этого типа.

 

По расположению меток в различных областях нервной пластинки подопытного животного, поставленных на очень ранних эмбриональных стадиях при использовании разных способов маркирования клеток, можно выяснить происхождение каждой из больших областей головного мозга. Здесь показано, как составляются «карты судьбы»; метки вводились в три области нервной пластинки раннего зародыша аксолотля - крупной амфибии (А). Окончательное местоположение маркированных клеток определялось по сагиттальным срезам головного мозга на более поздних стадиях эмбрионального развития (В). (Рисунок сделан по работе Джекобсона из Университета Упсалы.)

После того как клетки проходят ряд таких циклов (число их варьирует от области к области и от популяции к популяции внутри одной и той же области), они теряют способность синтезировать ДНК и мигрируют из эпителия, образуя второй клеточный слой по соседству с вентрикулярной зоной. Клетки, составляющие этот покровный, или промежуточный, слой, являются либо молодыми нейронами, которые уже больше не делятся, либо предшественниками глиальных клеток, сохраняющих способность к делению на протяжении всей своей жизни.

Хотя до сих пор неизвестно, чем включается и выключается механизм размножения в каждой данной области нервной системы, ясно, что сроки, по истечении которых различные популяции клеток перестают делиться, жестко детерминированы, и, более того, имеются веские основания полагать, что периоды эти являются критическими в жизни всех нейронов. Выход клеток из митотического цикла, по-видимому, не только влечет за собой последующую миграцию клеток в промежуточный слой, но и обеспечивает клеткам окончательный их «адрес», в том смысле, что если известна «дата их рождения» (определяемая по времени, когда клетки теряют способность синтезировать ДНК), то можно предсказать и будущее их местоположение. Более того, в некоторых случаях оказывается, что именно в это время определяется характер связей, в конечном счете формируемых нейроном.

На основании экспериментов, в которых небольшие количества меченого радиоактивного тимидина вводились в зародыш (или в случае млекопитающих в организм беременной), исследователи знают теперь даты рождения клеток во многих частях мозга для различных видов животных. Исходя из такого рода исследований, стало возможным сделать некоторые обобщения относительно характера размножения клеток мозга. Это, во-первых, то, что крупные нейроны (а к ним принадлежит большинство клеток, отростки которых распространяются на значительные расстояния, таких, например, как проецирующиеся в зрительные центры мозга клетки сетчатки) обычно формируются раньше, чем более мелкие нейроны, волокна которых не распространяются далеко за пределы тела клетки. Во-вторых, в каждой области мозга имеется характерное распределение клеток ко времени завершения размножения. К примеру, в коре головного мозга первые клетки, прекратившие размножение, впоследствии занимают самый глубинный кортикальный слой, а клетки, образовавшиеся в значительно более позднее время, соответственно создают все более поверхностные слои коры.

С другой стороны, в нейральном компоненте сетчатки (являющейся своеобразным продолжением мозга) пространственное распределение клеток разных генераций прямо противоположное: первое поколение образовавшихся клеток (ганглиозные) мигрируют в самый поверхностный слой сетчатки, а следующие популяции занимают все более глубокие слои. В других областях мозга расположение клеток более сложное, но и для подобных случаев можно считать доказанным, что клетки, локализующиеся в пределах одной общей зоны, образованы одновременно, и наоборот, клетки, образованные в разное время, располагаются, как правило, в разных зонах. Третье обобщение, которое может быть сделано, состоит в том, что в большей части мозга первые опорные клетки появляются примерно в то же самое время, что первые нейроны, но чаще всего размножение глиальных клеток продолжается значительно дольше.

Число нейронов, первоначально образованных в любой части мозга, определяется тремя факторами. Первым фактором является длительность пролиферативного периода: по последним данным она может варьировать от нескольких дней до нескольких недель. Второй фактор — это длительность клеточного цикла: у ранних зародышей она составляет несколько часов, однако далее по мере развития она может увеличиться до 4-5 дней. Третьим фактором является число клеток-предшественников, из которых образуется популяция нейронов.

В настоящее время существует ряд методов для определения длительности пролиферативного периода и длительности клеточного цикла, но лишь в малом числе случаев удается выявить пул клеток-предшественников. Одна из причин такого рода затруднения состоит в том, что пока еще нет способа проследить за судьбой отдельных клеток развивающегося мозга млекопитающих, как это было сделано при изучении значительно более простых форм нервной системы беспозвоночных. Зародыши этих организмов часто бывают совершенно прозрачными, и поэтому отдельные клетки можно наблюдать на протяжении нескольких митотических циклов с помощью светового микроскопа, оснащенного дифференциально-интерференционной оптикой. Иногда клетки-предшественники у таких организмов бывают настолько крупными, что могут быть без труда помечены с помощью внутриклеточных инъекций молекул-маркеров, таких, как пероксидаза хрена; если маркер не разрушается, то он обнаружится во всех потомках меченой клетки, по крайней мере в нескольких поколениях.

Поскольку большинство нейронов образуется в вентрикулярной зоне нервной трубки или в непосредственной близости от нее, а окончательно располагается на некотором расстоянии от этого слоя, следовательно, они должны пройти хотя бы одну стадию миграции после выхода из цикла. Только в небольшом числе случаев клетки, мигрируя из вентрикулярной зоны, продолжают делиться. Деление это обычно наблюдается в особой области между вентрикулярной и промежуточной зонами, названной субвентрикулярной зоной. Этот слой, наиболее отчетливо выраженный в переднем мозгу, дает начало многим более мелким нейронам глубинных структур больших полушарий (базальных ганглиев), некоторым мелким кортикальным нейронам и многим глиальным клеткам коры головного мозга и подлежащего белого вещества. В заднем мозгу ряд клеток из субвентрикулярной зоны вторично мигрирует под поверхность развивающегося мозжечка, где они дают начало специальной пролиферативной зоне, известной под названием наружного зернистого слоя. У человека размножение клеток в этом слое мозга продолжается в течение нескольких недель; здесь образуется большинство вставочных нейронов коры мозжечка, включая миллиарды специфических клеток мозжечка — так называемых клеток-зерен. За этим и некоторыми другими исключениями, в миграции участвуют постмитотические клетки.

В большинстве случаев движение нейронов при миграции носит амебоидный характер. Мигрирующая клетка вначале выбрасывает ведущий отросток, который прикрепляется к подходящему субстрату; ядро перетекает или втягивается в отросток, после чего подтягивается задний отросток. В целом это довольно медленный процесс: средняя скорость миграции клетки составляет около одной десятой миллиметра в день. В некоторых случаях клетка как целое не мигрирует. Вместо этого вначале на ранней стадии развития она выпускает несколько отростков, а позднее тело клетки перемещается постепенно все дальше и дальше от первых отростков, которые остаются при миграции тела на прежнем месте.

 

Ядра нервных клеток мигрируют в слое эпителиальной ткани, образующей стенку нервной трубки развивающегося зародыша. В период, когда в клетках, расположенных в этом слое, называемом нейроэпителием, или вентрикулярной зоной, реплицируется ДНК, их ядра движутся по направлению к внутренней поверхности эпителия, периферические отростки отделяются от наружного слоя, и клетки перед делением округляются. После митоза дочерние клетки либо выпускают новый отросток, по которому их ядра могут мигрировать обратно в средний слой эпителия, либо (если клетки прекращают делиться) удаляются из эпителия, принимая участие в образовании промежуточного слоя стенки мозга.

Поскольку нейроны часто мигрируют на значительные расстояния, интересно знать, на какого типа направляющие сигналы они реагируют. В частности, возникает вопрос, «откуда они знают», в какой момент времени следует сделать остановку и начать агрегацию с другими подобными нейронами. Уже на протяжении некоторого времени известно, что в развивающемся мозге существуют специализированные глиальные клетки, тела которых расположены в вентрикулярной зоне, а отростки вытянуты радиально к поверхности. Поскольку эти клетки появляются на ранних стадиях развития и продолжают существовать еще некоторое время после того, как нейроны прекратят миграцию, предполагается, что они могут служить удобными направляющими, вдоль которых нейроны могут двигаться. На электронных микрофотографиях многих частей развивающегося мозга мигрирующие клетки почти всегда обнаруживаются в тесном контакте с соседствующими отростками глиальных клеток. Этот факт позволил П. Ракичу (P. Rakic) из Медицинской школы Йельского университета постулировать, что мигрирующие клетки направляются к своему постоянному местоположению отростками глиальных клеток. В пользу этой точки зрения говорят наблюдения Ракича и Р. Сидмана (R. Sidman) из детской больницы Медицинского центра в Бостоне, заметивших, что в результате одной из наиболее поразительных генетических мутаций, затрагивающих мозжечок мыши, радиальные отростки глиальных клеток дегенерируют на сравнительно ранней стадии, и миграция большинства клеток-зерен полностью нарушается, видимо, как результат этой дегенерации.

 

Здесь показано постепенное утолщение стенки развивающегося мозга. На самой ранней стадии (1) стенка содержит только «псевдомногослойный» эпителий, в вентрикулярной зоне (ВЗ) которого находятся тела клеток, а в краевой зоне (КЗ) только вытянутые наружу отростки. Когда некоторые из клеток теряют способность синтезировать ДНК и выходят из митотического цикла (2), они образуют второй слой - промежуточную зону (ПЗ). В переднем мозгу клетки, проходящие через эту зону, агрегируют с образованием корковой пластинки (КП) - области, в которой развиваются различные слои коры головного мозга (3). На самой поздней стадии (4) исходная вентрикулярная зона остается в виде эпендимы - выстилки желудочков мозга, а относительно свободная от клеток область между этой выстилкой и корой становится подкорковым белым веществом, сквозь которое нервные волокна входят в кору и выходят из нее. Субвентрикулярная зона (СЗ) является вторичной зоной размножения, где образуются многие глиальные клетки и некоторые нейроны переднего мозга.

 

Специализированные опорные клетки - радиальные глиальные клетки - возникают на ранних стадиях развития нервной системы. Для этих клеток характерны необычайно длинные отростки, которые целиком «пробуравливают» стенку нервной трубки и производных структур. На рисунке вверху показано, как выглядят радиальные глиальные клетки на окрашенном по Гольджи толстом поперечном срезе препарата полушария головного мозга у плода обезьяны. Тела клеток лежат в вентрикулярной зоне, а их отростки протягиваются до наружной поверхности окружающих слоев, где они, по-видимому, прикрепляются с помощью разветвленного конца. Внизу слева показан увеличенный сегмент этого поперечного среза. Небольшой кусочек ткани в рамке показан внизу справа крупнее в виде объемной картинки, сделанной на основании микроскопического исследования Ракича. Рисунок показывает тесную связь между отростками радиальных глиальных клеток и мигрирующими нейронами; связь эта наблюдается при развитии большинства отделов мозга.








Дата добавления: 2017-05-18; просмотров: 391;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.