Типы кристаллических твердых тел

Существует два признака для классификации кристаллов: 1) кристаллографический; 2) физический (природа частиц, расположенных в узлах кристаллической решетки, и характер сил взаимодействия между ними).

1. Кристаллографический признак кристаллов. В данном случае важна только про­
странственная периодичность в расположении частиц, поэтому можно отвлечься от их
внутренней структуры, рассматривая частицы как геометрические точки.

Кристаллическая решетка может обладать различными видами симметрии. Сим­метрия кристаллической решетки — ее свойство совмещаться с собой при некоторых пространственных перемещениях, например параллельных переносах, поворотах, от­ражениях или их комбинациях и т. д. Кристаллической решетке, как доказал русский кристаллограф Е. С. Федоров (1853—1919), присущи 230 комбинаций элементов сим­метрии, или 230 различных пространственных групп.

С переносной симметрией в трехмерном пространстве связывают понятие трехмер­ной периодической структуры — пространственной решетки, или решетки Бравэ, пред­ставление о которой введено французским кристаллографом О. Бравэ (1811—1863). Всякая пространственная решетка может быть составлена повторением в трех различ­ных направлениях одного и того же структурного элемента — элементарной ячейки. Всего существует 14 типов решеток Бравэ, различающихся по виду переносной симмет­рии. Они распределяются по семи кристаллографическим системам, или сингониям, представленным в порядке возрастающей симметрии в табл. 3. Для описания элемен­тарных ячеек пользуются кристаллографическими осями координат, которые проводят параллельно ребрам элементарной ячейки, а начало координат выбирают в левом углу передней грани элементарной ячейки. Элементарная кристаллическая ячейка представ­ляет собой параллелепипед, построенный на ребрах а. b, с с углами a между ребрами (табл. 3). Величины a, b и с и а, B и у называются параметрами элементарной ячейки и однозначно ее определяют.

2. Физический признак кристаллов. В зависимости от рода частиц, расположенных
в узлах кристаллической решетки, и характера сил взаимодействия между ними кри­
сталлы разделяются на четыре типа: ионные, атомные, металлические, молекулярные.

Ионные кристаллы. В узлах кристаллической решетки располагаются поочередно ионы противоположного знака. Типичными ионными кристаллами являются большин­ство галоидных соединений щелочных металлов (NaCl, CsCl, КВг и т. д.), а также оксидов различных элементов (MgO, CaO и т. д.). Структуры решеток двух наиболее характерных ионных кристаллов — NaCl (решетка представляет собой две одинаковые гранецентрированные кубические решетки, вложенные друг в друга; в узлах одной из этих решеток находятся ионы Na+, в узлах другой — ионы С1 -) и CsCl (кубическая объемно центрированная решетка — в центре-каждой элементарной решетки находит­ся ион) — показаны на рис. 103. Силы взаимодействия между ионами являются


в основном электростатическими (куло-новскимн). Связь, обусловленная куло-новскими силами притяжения между разноименно заряженными ионами, на­зывается ионной (или гетерополярной). В ионной решетке нельзя выделить от­дельные молекулы: кристалл представ­ляет собой как бы одну гигантскую мо­лекулу.

Атомвые кристаллы. В узлах кри­сталлической решетки располагаются нейтральные атомы, удерживающиеся в узлах решетки гомеполярными, или ковалентными, связями квантово-меха-нического происхождения (у соседних атомов обобществлены валентные элек­троны, наименее связанные с атомом). Атомными кристаллами являются ал­маз и графит (два различных состояния углерода), некоторые неорганические со­единения (ZnS, BeO и т. д.), а также типичные полупроводники — германий Ge и кремний Si. Структура решетки алмаза приведена на рис. 104, где каж­дый атом углерода окружен четырьмя такими же атомами, которые располага­ются на одинаковых расстояниях от него в вершинах тетраэдров.



Валентные связи осуществляются па­рами электронов, движущихся по орби­там, охватывающим оба атома, и носят направленный характер: ковалентные силы направлены от центрального ато­ма к вершинам тетраэдра. В отличие от графита решетка алмаза не содержит плоских слоев, что не позволяет сдви­гать отдельные участки кристалла, по­этому алмаз является прочным соедине­нием.

Металлические кристаллы. В узлах кристаллической решетки располагают­ся положительные ионы металла. При образовании кристаллической решетки валент­ные электроны, сравнительно слабо связанные с атомами, отделяются от атомов и коллективизируются: они уже принадлежат не одному атому, как в случае ионной связи, и не паре соседних атомов, как в случае гомеополярной связи, а всему кристаллу в целом. Таким образом, в металлах между положительными ионами хаотически, подобно молекулам газа, движутся «свободные» электроны, наличие которых обес­печивает хорошую электропроводность металлов. Так как металлическая связь не имеет направленного действия и положительные ионы решетки одинаковы по свойст­вам, то металлы должны иметь симметрию высокого порядка. Действительно, боль-


Шинство металлов имеют кубическую объемно центрированную (Li, Na, К, Rb, Cs) и кубическую гранецентрированную (Си, Ag, Pt, Аи) решетки. Чаше всего металлы встречаются в виде поликристаллов.

Молекулярные кристаллы. В узлах кристаллической решетки располагаются ней­тральные молекулы вещества, силы взаимодействия между которыми обусловлены незначительным взаимным смещением электронов в электронных оболочках атомов. Эти силы называются ван-дер-ваальсовыми, так как они имеют ту же природу, что и силы притяжения между молекулами, приводящими к отклонению газов от идеаль­ности. Молекулярными кристаллами являются, например, большинство органических соединений (парафин, спирт, резина и т. д.), инертные газы (Ne, Ar, Кг, Хе) и газы СО2, О2, N2 в твердом состоянии, лед, а также кристаллы брома Вг2, иода 12. Ван-дер-ваальсовы силы довольно слабые, поэтому молекулярные кристаллы легко деформируются.

В некоторых твердых телах одновременно может осуществляться несколько видов связи. Примером может служить графит (гексагональная решетка). Решетка графита (рис. 105) состоит из ряда параллельных плоскостей, в которых атомы углерода расположены в вершинах правильных шестиугольников. Расстояние между плоскостя­ми более чем в два раза превышает расстояние между атомами шестиугольника. Плоские слои связаны друг с другом ван-дер-ваальсовыми силами. В пределах слоя три валентных электрона каждого атома углерода образуют ковалентную связь с сосед­ними атомами углерода, а четвертый электрон, оставаясь «свободным», коллективизи­руется, но не во всей решетке, как в случае металлов, а в пределах одного слоя. Таким образом, в данном случае осуществляются три вида связи: гомеополярная и метал­лическая — в пределах одного слоя; ван-дер-ваальсова — между слоями. Этим объяс­няется мягкость графита, так как его слон могут скользить друг относительно друга.



Различие в строении кристаллических решеток двух разновидностей углеро­да — графита и алмаза — объясняет различие в их физических свойствах: мягкость графита и твердость алмаза; графит — проводник электричества, алмаз — диэлектрик (нет свободных электронов) и т. д.

Расположение атомов в кристаллах характеризуется также координационным чис­лом — числом ближайших однотипных с данным атомом соседних атомов в кристал­лической решетке или молекул в молекулярных кристаллах. Для модельного изображе-




 


ния кристаллических структур из атомов и ионов пользуются системой плотной упаковки шаров. Рассматривая простейший случай плотной упаковки шаров оди­накового радиуса на плоскости, приходим к двум способам их расположения (рис. 106, а, б). Правая упаковка является более плотной, так как при равном числе шаров площадь ромба со стороной, равной стороне квадрата, меньше площади квадрата. Как видно из рисунка, различие в упаковках сводится к различию ко­ординационных чисел: в левой упаковке координационное число равно 4, в правой — б, т. с. чем плотнее упаковка, тем больше координационное число.

Рассмотрим, при каких условиях плотная упаковка шаров в пространстве может соответствовать той или иной кристаллической структуре, приводимой ранее. Начнем строить решетку со слоя шаров, представленных на рис. 106, 6. Для упрощения дальнейших рассуждений спроецируем центры шаров на плоскость, на которой они лежат, обозначив их белыми кружками (рис. 107). На эту же плоскость спроецируем центры просветов между шарами, которые обозначены на рис. 107 соответственно черными кружками и крестиками. Любой плотноупакованный слой будем называть слоем А, если центры его шаров расположены над серыми кружками, слоем В — если над красными кружками, слоем С — если над крестиками. Над слоем А уложим второй плотноупакованный слой так, чтобы каждый шар этого слоя лежал на трех шарах первого слоя. Это можно сделать двояко: взять в качестве второго слоя либо В, либо С. Третий слой 'можно опять уложить двояко и т. д. Итак, плотную упаковку можно описать как последовательность АВСВАС..., в которой не могут стоять рядом слои, обозначенные одинаковыми буквами.

Из множества возможных комбинаций в кристаллографии реальное значение име­ют два типа упаковки: 1) двухслойная упаковка АВАВАВ... — гексагональная плотно-упакованная структура (рис. 108); 2) трехслойная упаковка АВСАВС... — кубическая гранецентрированная структура (рис. 109). В обеих решетках координационное число равно 12 и плотность упаковки одинакова — атомы занимают 74% общего объема кристалла. Координационное число, соответствующее кубической объемно центриро­ванной решетке, равно 8, решетке алмаза (см. рис. 104) равно 4.

Кроме двух- и трехслойных упаковок можно построить многослойные с большим периодом повторяемости одинаковых слоев, например АВСВАСАВСВАС... — шести-слойная упаковка. Существует модификация карбида SiC с периодом повторяемости 6, 15 и 243 слоя.

Если кристалл построен из атомов различных элементов, то его можно представить в виде плотной упаковки шаров разных размеров. На рис. 110 приведено модельное изображение кристалла поваренной соли. Крупные ионы хлора (г = 181 пм) образуют плотную трехслойную упаковку, у которой большие пустоты заполнены меньшими по


размеру ионами натрия (г=98 пм). Каждый ион Na окружен шестью ионами О и, наоборот, каждый ион С1 — шестью ионами Na.

<== предыдущая лекция | следующая лекция ==>
Твердыt тала. Моно- и поликристаллы | Дефекты в кристаллах


Дата добавления: 2017-04-20; просмотров: 50; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2017 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.099 сек.