Ранговый коэффициент корреляции

В тех случаях, когда основные статистические характеристики в генеральной совокупности, из которой формируется выборка, оказываются за пределами параметров нормального или близкого к нему закона распределения, можно рекомендовать применение ранговой корреляции. С этой целью используют прежде всего ранжирование статистической совокупности отдельно по вариантам факторного и результативного признаков. Далее расчет рангового коэффициента корреляции проводится по формуле:

(11.4)

где r xy – коэффициент ранговой корреляции между признаком-фактором и признаком-результатом; d – разность между ранговыми номерами вариант по признаку-фактору и признаку-результату; n – численность выборки.

Определение коэффициента ранговой корреляции покажем на примере, отражающем взаимосвязь между урожайностью и трудоемкостью льносоломки в 50 сельскохозяйственных организациях (табл. 11.4).

 

Т а б л и ц а 11. 4. Расчет вспомогательных показателей для определения рангового коэффициента корреляции

№ п.п. х, ц/га у, чел.-ч/ц № по х № по у d d2
-49
-47
-45
-43
-41
Σ - - - - -

 

Теперь подставим необходимые данные в формулу 11.4; получим:

Рассчитанный коэффициент корреляции (r xy = – 0,5) указывает на наличие обратной зависимости между урожайностью и трудоемкостью льносоломки, причем тесноту связи между этими признаками можно оценить как среднюю.

Теснота (сила) зависимости результативных признаков от факторных повышается по мере приближения к единице. Условно принято считать, что если корреляционное отношение или коэффициент корреляции не превышает 0,3, то зависимость можно признать слабой, от 0,3 до 0,7 – средней, свыше 0,7 – тесной.

<== предыдущая лекция | следующая лекция ==>
Коэффициента парной корреляции | Коэффициент множественной корреляции


Дата добавления: 2017-04-20; просмотров: 43; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2017 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.