Структура ядра и его химический состав

В состав ядра входит хроматин, ядрышко, кариоплазма (нуклеоплазма), ядерная оболочка.

В клетке, которая делится, в большинстве случаев имеется одно ядро, но встречаются клетки, которые имеют два ядра (20% клеток печени двуядерные), а также многоядерные (остеокласты костной ткани).

ЁРазмеры - колеблятся от 3-4 до 40 мкм.

Каждый тип клетки характеризуется постоянным соотношением объема ядра к объему цитоплазмы. Такое соотношение носит название индекса Гертвинга. В зависимости от значения этого индекса клетки делятся на две группы:

1. ядерные - индекс Гертвинга имеет большее значение;

2. цитоплазматические - индекс Гертвинга имеет незначительные значения.

ЁФорма - может быть сферической, палочковидной, бобовидной, кольцевидной, сегментированной.

ЁЛокализация - ядро всегда локализуется в определенном месте клетки. Например, в цилиндрических клетках желудка оно находится в базальном положении.

Ядро в клетке может находится в двух состояниях:

а) митотическом (во время деления);

б) интерфазном (между делениями).

В живой клетке интерфазное ядро имеет вид оптически пустого, обнаруживается только ядрышко. Структуры ядра в виде нитей, зерен можно наблюдать только при действии на клетку повреждающих факторов, когда она переходит в состояние паранекроза (пограничное состояние между жизнью и смертью). С этого состояния клетка может вернуться к нормальной жизни или погибнуть. После гибели клетки морфологически, в ядре различают следующие изменения:

1) кариопикноз - уплотнение ядра;

2) кариорексис - разложение ядра;

3) кариолизис - растворение ядра.

Функции: 1) хранение и передача генетической информации,

2) биосинтез белка, 3) образование субъединиц рибосом.

Хроматин

Хроматин ( от греч. сhroma - цвет краска) - это основная структура интерфазного ядра, которая очень хорошо красится основными красителями и обуславливает для каждого типа клеток хроматиновый рисунок ядра.

Благодаря способности хорошо окрашиваться различными красителями и особенно основными этот компонент ядра и получил название «хроматин» (Флемминг 1880).

Хроматин является структурным аналогом хромосом и в интерфазном ядре представляет собой несущие ДНК тельца.

Морфологически различают два вида хроматина:

1) гетерохроматин;

2) эухроматин.

Гетерохроматин (heterochromatinum) соответствует частично конденсированным в интерфазе участкам хромосом и является функционально неактивным. Этот хроматин очень хорошо окрашивается и именно его можна видеть на гистологических препаратах.

Гетерохроматин в свою очередь делится на:

1) структурный; 2) факультативный.

Структурный гетерохроматин представляет участки хромосом, которые постоянно находятся в конденсированном состоянии.

Факультативный гетерохроматин - это гетерохроматин, способный деконденсироваться и превращатся в эухроматин.

Эухроматин - это деконденсированные в интерфазе участки хромосом. Это рабочий, функционально активный хроматин. Этот хроматин не окрашивается и не обнаруживается на гистологических препаратах.

Во время митоза весь эухроматин максимально конденсируется и входит в состав хромосом. В этот период хромосомы не выполняют никаких синтетических функций. В связи с этим хромосомы клеток могут находится в двух структурно-функциональных состояниях:

1) активном (рабочем), иногда они частично или полностью деконденсированы и с их участием в ядре происходят процессы транскрипции и редупликации;

2) неактивном (нерабочем, метаболического покоя), когда они максимально конденсированы выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Иногда в отдельных случаях целая хромосома в период интерфазы может оставаться в конденсированном состоянии, при этом она имеет вид гладкого гетерохроматина. Например, одна из Х-хромосом соматических клеток женского организма подлежит гетерохроматизации на начальных стадиях эмбриогенеза ( во время дробления) и не функционирует. Этот хроматин называется половых хроматином или тельцами Барра.

В разных клетках половой хроматин имеет различный вид:

а) в нейтрофильных лейкоцитах - вид барабанной палочки;

б) в эпителиальных клетках слизистой - вид полусферической глыбки.

Определение полового хроматина используется для установления генетического пола, а также для определения количества Х-хромосом в кариотипе индивидума (оно равняется количеству телец полового хроматина+1).

При электронно-микроскопических исследованиях установлено, что препараты выделенного интерфазного хроматина содержат элементарные хромосомные фибриллы толщиной 20-25 нм, которые состоят из фибрилл толщиной 10 нм.

В химическом отношении фибриллы хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входят:

а) ДНК;

б) специальные хромосомные белки;

в) РНК.

Количественное соотношение ДНК, белка и РНК составляет 1:1,3:0,2. На долю ДНК в препарате хроматина приходится 30-40%. Длина индивидуальных линейных молекул ДНК колеблется в непрямых пределах и может достигать сотен микрометров и даже сантиметров. Суммарная длина молекул ДНК во всех хромосомах одной клетки человека составляет около 170 см, что соответствует 6х10-12г.

Белки хроматина составляют 60-70% от его сухой массы и представлены двумя группами:

а) гистоновыми белками;

б) негистоновыми белками.

ЁГистоновые белки (гистоны) - щелочные белки, содержащие основные аминокислоты (главным образом лизин, аргинин) располагаются неравномерно в виде блоков по длине молекулы ДНК. Один блок содержит 8 молекул гистонов, которые образуют нуклеосому. Размер нуклеосомы около 10 нм. Нуклеосома образуется путем компактизации и сверхспирализации ДНК, что приводит к укорачиванию длины хромосомной фибриллы примерно в 5 раз.

ЁНегистоновые белки составляют 20% от количества гистонов и в интерфазных ядрах образуют внутри ядра структурную сеть, которая носит название ядерного белкового матрикса. Этот матрикс представляет основу, которая определяет морфологию и метаболизм ядра.

Ядра содержат кроме хроматиновых участков и матрикса перихроматиновые фибриллы, перихроматиновые и интерхроматиновые гранулы. Они содержат РНК и встречаются практически во всех активных ядрах.

Перихроматиновые фибриллы имеют толщину 3-5 нм, гранулы имеют диаметр 45нм и интерхроматиновые гранулы имеют диаметр 21-25 нм.

Ядрышко

Ядрышко (nucleolus) - самая плотная структура ядра, которая хорошо видна в живой неокрашенной клетке и является производным хромосомы, одним из ее локусов с наиболее высокой концентрацией и активным синтезом РНК в интерфазе, но не является самостоятельной структурой или органеллой.

ЁРазмер - 1-5 мкм.

ЁФорма - сферическая.

Ядрышко имеет неоднородную структуру. В световом микроскопе видна его тонковолокнистая организация.

Электронная микроскопия позволяет обнаружить два основных компонента:

а) гранулярный; б) фибриллярный.

Гранулярный компонент представлен гранулами с диаметром 15-20 нм, это созревающие субъединицы рибосом. Иногда гранулярный компонент образует нитчатые структуры - нуклеолонемы, толщиной около 0,2 мкм. Локализуется гранулярный компонент по периферии.

Фибриллярный компонент представляет собой рибонуклеопротеидные тяжи предшественников рибосом, которые сосредоточены в центральной части ядрышка.

Ультраструктура ядрышек зависит от активности синтеза РНК: при высоком уровне синтеза в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул снижается и ядрышки превращаются в плотные фибриллярные тяжи базофильной природы.

Ядерная оболочка

Ядерная оболочка (nuclolemma) состоит из:

1. Внешней ядерной мембраны (m. nuclearis externa),

2.Внутренней мембраны (m. nuclearis interna), которые разделены перинуклеарным пространством или цистерной ядерной оболочки (cisterna nucleolemmae), шириной 20-60 нм.

Каждая мембрана имеет толщину 7-8нм. В общем виде ядерная оболочка напоминает полый двухслойный мешок, который отделяет содержимое ядра от цитоплазмы.

Наружная мембрана ядерной оболочки, которая непосредственно контактирует с цитоплазмой клетки, имеет целый ряд структурных особенностей, которые позволяют отнести ее к собственно мембранной системе эндоплазматической сети. К таким особенностям относится: наличие на ней со стороны гиалоплазмы многочисленных полирибосом, а сама внешняя ядерная мембрана может прямо переходить в мембраны гранулярной эндоплазматической сети. Поверхность наружной ядерной мембраны в большинстве животных и растительных клеток не является гладкой и образует различных размеров выросты в сторону цитоплазмы в виде пузырьков или длинных трубчатых образований.

Внутренняя ядерная мембрана связана с хромосомным материалом ядра. Со стороны кариоплазмы к внутренней ядерной мембране прилегает так называемый фибриллярный слой, состоящий из фибрилл, но он характерен не для всех клеток.

Ядерная оболочка не является сплошной. Наиболее характерными структурами ядерной оболочки являются ядерные поры. Ядерные поры образуются в результате слияния двух ядерных мембран. При этом формируются округлые сквозные отверстия (перфорации, annulus pori), которые имеют диаметр около 80-90 нм. Эти отверстия ядерной оболочки заполнены сложноорганизованными глобуллярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур получило название комплекса поры (complexus pori). Комплекс поры состоит из трех рядов гранул по восемь штук в каждом ряду, диаметр гранул 25 нм, от этих гранул отходят фибриллярные отростки. Гранулы располагаются на границе отверстия в ядерной оболочке: один ряд лежит со стороны ядра, второй - со стороны цитоплазмы, третий в центральной части поры. Фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать, как бы перегородку, диафрагму поперек поры (diaphragma pori). Размеры пор у данной клетки обычно стабильны. Количество ядерных пор зависит от метаболической активности клеток: чем интенсивнее синтетические процессы в клетке, тем больше пор на единицу поверхности клеточного ядра.

ЁФункции:

1. Барьерная - отделяет содержимое ядра от цитоплазмы, ограничивает свободный транспорт макромолекул между ядром и цитоплазмой.

2. Создание внутриядерного порядка - фиксация хромосомного материала в трехмерном просвете ядра.

Кариоплазма

Кариоплазма - это жидкая часть ядра, в которой располагаются ядерные структуры, она является аналогом гиалоплазмы в цитоплазматической части клетки.

Репродукция клеток

Одним из наиболее важных биологических явлений, которое отражает общие закономерности и есть неотъемлемым условием существовния биологических систем в течение достаточно длительного периода времени является репродукция (воспроизведение) их клеточного состава. Размножение клеток, согласно клеточной теории, осуществляется путем деления исходной. Это положение является одним из основных в клеточной теории.

Клеточный цикл (cyclus cellularis)

Это время жизнедеятельности клетки как таковой, от деления до деления или от образования до смерти. Клетки взрослых организмов высших животных и человека в различных органах имеют различную способность к делению и соответственно, различный клеточный цикл. Делению клетки предшествует удвоение ее хромосомного набора и соответственно количества ДНК. Такое удвоение происходит в строго определенном периоде интефазы и только после этого происходит деление клетки. Важную роль в регуляции входа клетки в митоз играет белок циклин. Уменьшение количества циклина увеличивает продолжительность интерфазы.

Клеточный цикл делят на 4 периода:

1. Собственно митоз (М).

2. Пресинтетический (G1) период интерфазы.

3. Синтетический (S) период интерфазы.

4. Постсинтетический (G2) период интерфазы.

Пресинтетический период (G1 - сокр. от англ. Grow - расти). Этот период происходит сразу после деления и характеризуется усиленным ростом молодой клетки, в основном за счет накопления клеточных белков. В этом периоде начинается подготовка клеток к синтезу ДНК; происходит синтез ферментов, необходимых для образования предшественников ДНК (нуклеотидфосфокиназ), ферментов метаболизма РНК и белка. Резко возрастает активность ферментов, участвующих в энергетическом обмене.

Синтетический период (S-период, сокр. от synthesis - синтез). В этом периоде происходит удвоение количества ДНК на ядро и соответственно удваивается количество хромосом. Разные клетки, находящиеся в S-периоде, содержат различное количество ДНК - от 2с до 4с. Это связано с тем, что исследованию подвергаются клетки на разных этапах синтеза ДНК (приступившие к синтезу и завершившие его). S-период - это узловой период клеточного цикла, без прохождения его невозможно вступление клетки в митотический цикл. Уровень синтеза РНК в S-периоде возрастает, соответственно увеличивается количество ДНК, достигая своего максимума в G2-периоде. В этот период происходит удвоение центриолей.

Постсинтетический период (G2) - премитотический. На данном этапе происходит синтез иРНК, необходимой для прохождения митоза. Кроме этого синтезируются рРНК рибосом, определяющих деление клетки. Особое место среди синтезируемых белков занимают тубулины - белки митотического веретена.

По мере конденсации митотических хромосом в конце G2 периода синтез РНК резко падает и прекращается полностью во время митоза. Во время митоза синтез белка также снижается, достигая максимума в G2-периоде.

В организме имеются клетки, которые находятся как бы вне цикла. Эти клетки называют клетки G0-периода. Они не проходят S-период, не делятся, находятся в состоянии покоя.

Существует несколько типов этих клеток:

1. Стволовые клетки - малодифференцированные клетки, сохранившие способность к делению, но на длительное время вышедшие из цикла, вступая в G0-период.

2. Клетки, потерявшие способность к делению, но специализируются и дифференцируются. Клетки этого типа, подразделяясь на два вида:

а) клетки, которые встав на путь дифференциации навсегда теряют способность к делению (зрелые клетки крови, клетки эпидермиса);

б) клетки, которые после дифференциации не теряют способность делению и в нужный момент могут возвращаться в цикл (клетки печени)

3. Клетки высокодифференцированные, которые во взрослом организме бесповоротно теряют способность к делению и длительность их жизни соответствует жизни организма (нервные клетки).

Митоз

Митоз (mitosis, кариокинез) непрямое деление является универсальным и широко распостраненным способом деления клеток. Во время митоза вследствии конденсации эухроматина в ядре становятся видными редуплицированные хромосомы, которые при помощи ахроматинового митотического аппарата расходятся к полюсам клетки, после чего наблюдается деление тела клетки (цитокинез, цитотомия).

В процессе непрямого деления клетки принято различать несколько основных фаз:

1. Интерфаза. 2. Профаза; 3. Метафаза; 4. Анафаза; 5. Телофаза

Профаза. После завершения S-периода количество ДНК в интерфазном ядре равняеться 4 с, в связи с удвоением хромосомного материала. Для интерфазы характерно то, что исчезает рисунок интерфазного ядра, появляются нитевидные плотные тельца - хромосомы. На стадии ранней профазы (стадия плотного клубка) они отделены одна от другой не очень четко. В поздней профазе (стадия рыхлого клубка) они четко отделяются друг от друга. Каждая хромосома является двойной структурой, поскольку редупликация ДНК произошла в S-периоде интерфазы, но вследствие плотного их прилегания эта двойственность не выявляется. В конце профазы исчезает ядрышко, одновременно разрушается ядерная оболочка, которая распадается на фрагменты, а затем на мелкие мембранные пузырьки. Уменьшается количество элементов гранулярной эндоплазматической сети. Формируется веретено деления, вследствие расхождения центриолей к полюсам клетки. Аппарат деления в клетках животных имеет веретенообразную форму и состоит из двух центросфер с центриолями в середине и лежащих между ними волокон веретена. Все эти структуры построены из микротрубочек, образованных вследствии полимеризации тубулинов в зоне центриолей. Центрами организации микротрубочек веретена являются специальные структуры хромосом - кинетохоры, которые локализованы в зонах первичных перетяжек.

В результате в веретене деления образуются два типа волокон:

1) центральные, которые идут от полюсов к центру веретена;

2) кинетохорные, или хромосомные которые соединяют хромосомы с одним из полюсов.

Метафаза. В этот период происходит завершение образования веретена деления, а хромосомы выстраиваются в экваториальной плоскости веретена, образуя метафазную пластинку хромосом или материнскую звезду. Передвижение хромосом в экваториальном направлении носит название метакинеза. В материнской звезде центромерные участки хромосом повернуты к центру, а их плечи - к периферии. К концу метафазы заканчивается процесс обособления друг от друга сестринских хроматид. Их плечи лежат параллельно, между ними видна разделяющая щель. Последним местом контакта между хроматидами является центромера.

Анафаза. В этот период все сестринские хроматиды одновременно теряют связь друг с другом в области центромер и синхронно начинают удаляться друг от друга к противоположным полюсам клетки со скоростью 0,2-0,5 мкм/мин. Хроматиды ориентированы центромерами к полюсам, а плечами - к экватору. Анафаза самая короткая стадия митоза, но имеет очень большое значение, так как происходит обособление двух идентичных наборов хромосом. Кроме движения самих хромосом к полюсам, дополнительно происходит расхождение и самих полюсов. Механизм движения хромосом точно не установлен. Большинство исследователей поддерживают гипотезу «скользящих нитей», согласно которой соседние микротрубочки, взаимодействуя друг с другом и сократительными белками, тянут хромосомы к полюсам.

Телофаза. Этот период начинается остановкой разошедшихся диплоидных (2n) наборов хромосом. Ориентация хромосом остается такой же как и в анафазе (ранняя телофаза). Хромосомы в этот период деконденсируются, увеличиваются в объеме. В местах их контактов с мембранными пузырьками цитоплазмы образуется новая ядерная оболочка. После замыкания ядерной оболочки начинается формирование новых ядрышек (поздняя телофаза).

В телофазе происходит деление клеточного тела - цитотомия и цитокинез.

В клетках животных цитотомия происходит путем образования перетяжки, в результате впячивания плазматической мембраны внутрь клетки. При этом в кортикальном, мембранном слое цитоплазмы располагаются сократительные элементы типа актиновых фибрилл, ориентированых циркулярно в зоне экватора клетки. Сокращение этого кольца завершается делением клеточного тела. Образованные клетки переходят в новый G1-период.

Хромосомы

Хромосомы - это плотные палочковидные или нитевидные тельца диаметром 0,2-2 мкм и длинной в человека от 1,5 до 10 мкм, которые хорошо красятся основными красителями и заметны в ядре во время митотического деления.

В последнее время считают, что на каждую хромосому приходится одна гигантская молекула дезоксирибонуклеопротеида (ДНП), сложно уложенная в относительно короткое тельце - собственно хромосому. Установлено, что в митотической хромосоме существуют боковые петли этой молекулы ДНП, которые в вытянутом состоянии могут достигать до 30 мкм. Их компактизация приводит к образованию структур промежуточного характера - хромонемные фибриллы. Взаимодействие этих компонентов хромосом друг с другом и их взаимная агрегация приводит к конечной компактизации хроматина в виде митотической хромосомы.

В каждой хромосоме можно определить зону первичной перетяжки (центромеры), которая делит хромосому на два плеча. Хромосома с равными или почти равными плечами называется метацентрической, с плечами неодинаковой длины - субметацентрической. Хромосома с очень коротким, почти незаметным вторым плечом называются акроцентрической. В зоне первичной перетяжки располагается кинетохор, который является центром организации микротрубочек, которые образуют хромосомные нити веретена деления. Некоторые хромосомы имеют вторичные перетяжки, располагающиеся вблизи одного из концов хромосомы и отделяющие маленький участок - спутникхромосомы. Вторичные перетяжки, кроме этого, называют ядрышковым организатором, так как именно на этих участках хромосом в интерфазе образуется ядрышко. Плечи хромосом заканчиваются теломерами - конечными участками. Количество хромосом, их размеры у разных организмов очень широко варьируют. Совокупность числа, размеров и особенностей строения хромосом называется кариотипом данного вида.

Кариотип человека характеризуется наличием 23 пар хромосом из которых 22 пары аутосом и одна пара половых хромосом (гоносом). Гоносомы бывают Х и У. Количество хромосомных наборов в клетке обозначают термином - плоидность и буквой n. Соматические клетки имеют двойной набор (диплоидный) хромосом 2n, половые клетки - одинарный (гаплоидный) n. По размерам хромосомы человека делят на 7 групп - A,В,С,Д,Е,F,G.

Эндомитоз

Эндомитоз (эндорепродукция) - образование клеток с увеличенным содержанием ДНК, вследствие блокирования на определенных этапах митоза.

Остановка митоза возможна после G2-периода, тогда клетка может пройти последующий цикл репликации ДНК, что обусловит увеличение количества хромосомных наборов в 4-8раз.

Остановка митоза возможна в профазе или в метафазе, когда нарушается функция веретена деления.

Наконец, возможно прохождение клеткой всех фаз митоза, но без деления клеточного тела, когда образуются двуядерные клетки.

Мейоз

Мейоз- это форма клеточной репродукции которая характерна для процесса образования половых клеток.

Мейоз состоит из двух последовательных митотических делений, между которыми отсутствует интерфаза. В результате мейоза образуются клетки с гаплоидным набором хромосом. Характерной особенностью профазы мейоза является кроссинговер - обмен гомологичными участками хромосом, который является одним из существенных факторов изменчивости организмов.

 








Дата добавления: 2017-01-29; просмотров: 1869;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.026 сек.