Принцип гидравлического расчета газопроводов

 

I. Разновидности расчетов сетей:

1) Оптимизационные и технико-экономические расчеты решают задачи выбора основных параметров, включаемых в задание на проектирование, в частности: выбор оптимального направления и условий прокладки трубопровода, определение наиболее эффективной технологической схемы транспортировки и параметров трубопровода, определение целесообразного уровня резервирования в элементах систем и другие

2) Технологические расчеты включают выбор технологии и технологической схемы транспортировки, обоснование технологической структуры трубопровода, определение состава и типа используемого оборудования, режимов его работы и другие

3) Гидравлические расчеты предусматривают определение давления и скорости перемещаемой по трубопроводу среды в различных сечениях трубопровода, а также потери напора движущегося потока

4) Тепловые расчеты включают определение температуры транспортируемого продукта, оценку температуры стенок трубопроводов и оборудования, а также потерь тепла трубопроводами и их термических сопротивлений

5) Механические расчеты предполагают оценку прочности, устойчивости, и деформации трубопровода, конструкций, установок и оборудования под действием температуры, давления и других нагрузок и выбор значений параметров, обеспечивающих надежную работу в заданных условиях

6) Расчет внешних воздействий на процесс транспортировки включают определение температуры внешней среды, ветровых, снеговых и других механических нагрузок, оценку сейсмичности и другие

7) Расчет свойств транспортируемой среды предусматривает определение физических, химических, термодинамических и прочих характеристик, необходимых для проектирования трубопроводов и прогнозирования режимов его эксплуатации

 

II. Цель гидравлического расчета

Прямой задачей при проектировании газопроводов является определение внутреннего диаметра труб при пропуске необходимого количества газа при допустимых для конкретных условий потерях давления.

Обратная задача – определение потерь давления при заданном расходе, диаметре газопровода и давлении.

 

III. Уравнения, являющиеся основанием для вывода формул гидравлического расчета

Для большинства задач расчета газопроводов движение газа можно считать изотермическим, температура трубы принимается равной температуре грунта. Следовательно определяющими параметрами будут: давление газа р, его плотность ρ и скорость движения ω. Для их определения нам нужна система из 3 уравнений:

1) Уравнение Дарси в дифференциальной форме, определяющее потери давления на преодоление сопротивлений:

где – коэффициент трения, d – внутренний диаметр

2) Уравнение состояния для учета изменения плотности от изменения давления:

3) Уравнение неразрывности:

где М – массовый расход, Q0 – объемный расход, приведенный к нормальным условиям

 

Решая систему, получим основное уравнение для расчета газопроводов высокого и среднего давления:

Для расчета городских газопроводов Т≈Т0, следовательно:

Для расчета низкого давления подставим , а так как ≈Р0, то формула примет вид:

 

IV. Основные составляющие сопротивления движения газа

· Линейные сопротивления трения по всей длине газопровода

· Местные сопротивления в местах изменения скоростей и направления движения

По соотношению местных потерь и потерь давления по длине сети бывают:

- короткие – местные потери соизмеримые с потерями по длине

- длинные – местные потери пренебрежимо малы по отношению к потере по длине (5-10%)

 

V. Основные формулы для гидравлического расчета согласно
СП 42-101-2003

1. Падение давления на участке газовой сети можно определить по формулам:

а) Для среднего и высокого давления:

где

Рн — абсолютное давление в начале газопровода, МПа;

Рк — абсолютное давление в конце газопровода, МПа;

Р0 = 0,101325 МПа;

— коэффициент гидравлического трения;

l — расчетная длина газопровода постоянного диаметра, м;

d — внутренний диаметр газопровода, см;

— плотность газа при нормальных условиях, кг/м3;

Q0 — расход газа, м3/ч, при нормальных условиях;

б) Для низкого давления:

где

Рн — избыточное давление в начале газопровода, Па;

Рк — избыточное давление в конце газопровода, Па

в) В трубопроводах жидкой фазы СУГ:

V – средняя скорость движения сжиженных газов, м/с: во всасывающих трубопроводах – не более 1,2 м/с; в напорных трубопроводах – не более 3 м/с

2. Режим движения газа по газопроводу, характеризуемый числом Рейнольдса:

где ν - коэффициент кинематической вязкости газа при нормальных условиях, 1,4•10-6м2

Условие гидравлической гладкости внутренней стенки газопровода:

n - эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая равной для новых стальных - 0,01 см, для бывших в эксплуатации стальных - 0,1 см, для полиэтиленовых независимо от времени эксплуатации - 0,0007 см/

3. Коэффициент гидравлического трения λ определяется в зависимости от значения Re:

а) для ламинарного режима движения газа Re ≤ 2000:

б) для критического режима движения газа 2000≤ Re ≤ 4000:

в) при Re > 4000 - в зависимости от выполнения условия гидравлической гладкости внутренней стенки газопровода:

- для гидравлически гладкой стенки:

· при 4000 < Re < 100000:

· при Re > 100000:

- для шероховатых стенок:

4. Предварительный подбор диаметров участков сети

, где

· dp — расчетный диаметр [см]

· А, В, m, m1 — коэффициенты, определяемые по таблицам 6 и 7 СП 42-101-2003 в зависимости от категории сети (по давлению) и материала газопровода

· — расчетный расход газа, м3/ч, при нормальных условиях;

· ΔPуд — удельные потери давления (Па/м — для сетей низкого давления, МПа/м — для сетей среднего и высокого давления)

 

Категория сети А
сеть низкого давления 106/(162•p2) = 626
сеть среднего и высокого давления P0 = 0,101325 МПа, Pm — усредненное давление газа (абсолютное) в сети, МПа

 

Материал В m m1
сталь 0,022
полиэтилен v – кинематическая вязкость газа при нормальных условиях, м2 1,75 4,75

 

Внутренний диаметр газопровода принимается из стандартного ряда внутренних диаметров трубопроводов: ближайший больший - для стальных газопроводов и ближайший меньший - для полиэтиленовых.

5. При расчете газопроводов низкого давления учитывается гидростатический напор Нg, даПа, определяемый по формуле:

где g - ускорение свободного падения, 9,81 м/с2;

h - разность абсолютных отметок начальных и конечных участков газопровода, м;

ρа - плотность воздуха, кг/м3, при температуре 0°С и давлении
0,10132 МПа;

ρ0 - плотность газа при нормальных условиях, кг/м3

6. Местные сопротивления:

Для наружных надземных и внутренних газопроводов расчетную длину газопроводов определяют по формуле:

где l1 – действительная длина газопровода, м;

Σξ – сумма коэффициентов местных сопротивлений участка газопровода

Падение давления в местных сопротивлениях (колена, тройники, запорная арматура и др.) допускается учитывать путем увеличения фактической длины газопровода на 5 - 10 %

При расчете внутренних газопроводов низкого давления для жилых домов допускается определять потери давления газа на местные сопротивления в размере:

- - на газопроводах от вводов в здание:

· до стояка – 25% линейных потерь

· на стояках – 20% линейных потерь

- - на внутриквартирной разводке:

· при длине разводки 1 - 2 м – 450% линейных потерь

· при длине разводки 3 - 4 м – 300% линейных потерь

· при длине разводки 5 - 7 м – 120% линейных потерь

· при длине разводки 8 - 12 м – 50% линейных потерь

Более подробные данные о величине ξ приведены в справочнике С.А.Рысина:

 

7. Расчет кольцевых сетей газопроводов следует выполнять с увязкой давлений газа в узловых точках расчетных колец. Неувязка потерь давления в кольце допускается до 10 %. При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления.

 

VI. По конфигурации сети бывают:

1) Простые: трубопроводы с постоянным диаметром и не имеющие ответвлений

2) Сложные: имеющие хотя бы одно ответвление

 

а) Тупиковые (обычно сети низкого давления, позволяют сэкономить на трубопроводах, т. к. имеют минимальную длину)

б) Кольцевые (обычно сети высокого и среднего давления, имеют возможность резервирования, т.е. продолжения снабжения газом объектов в случае аварии на одном из участков путем перераспределения потоков)

в) Смешанные (сочетают возможности тупиковых и кольцевых сетей, обычно получаются из тупиковых сетей путем их закольцовки – добавления перемычки между стратегически важными точками)

 

Вопросы для самопроверки

11. Разновидности расчетов сетей

12. Цели гидравлического расчета

13. Понятие о сопротивлении движению газа

14. Определение основных констант и переменных, входящих в формулы гидравлического расчета

15. Учет местных сопротивлений при гидравлическом расчете газопроводов

16. Допустимые невязки и скорости газа в сетях

17. Классификация сетей по конфигурации.

 

 

Б2Л10 СГРГП

Лекция 10








Дата добавления: 2017-01-13; просмотров: 7962;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.024 сек.