Об аксиоматическом способе построения теории
При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила:
- некоторые понятия теории выбираются в качестве основных и принимаются без определения;
- каждому понятию теории, которое не содержится в списке основных, дается определение, в нем разъясняется его смысл с помощью основных и предшествующих данному понятий;
- формулируются аксиомы- предложения, которые в данной теории принимаются без доказательства; в них раскрываются свойства основных понятий;
- каждое предложение теории, которое не содержится в списке аксиом, должно быть доказано; такие предложения называют теоремамии доказывают их на основе аксиом и теорем, предшествующих рассматриваемой.
Если построение теории осуществляется аксиоматическим методом, т.е. по названным выше правилам, то говорят, что теория построена дедуктивно.
При аксиоматическом построении теории по существу все утверждения выводятся путем доказательства из аксиом. Поэтому к системе аксиом предъявляются особые требования. Прежде всего, она должна быть непротиворечивой и независимой.
Система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения.
Если система аксиом не обладает этим свойством, она не может быть пригодной для обоснования научной теории.
Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы.
При аксиоматическом построении одной и той же теории можно использовать разные системы аксиом. Но они должны быть равносильными. Кроме того, при выборе той или иной системы аксиом математики учитывают, насколько просто и наглядно могут быть получены доказательства теорем в дальнейшем. Но если выбор аксиом условен, то сама наука или отдельная теория не зависят от каких-либо условий, - они являются отражением реального мира.
Аксиоматическое построение системы натуральных чисел осуществляется по сформулированным правилам. Изучая этот материал, мы должны увидеть, как из основных понятий и аксиом можно вывести всю арифметику натуральных чисел. Конечно, его изложение в нашем курсе будет не всегда строгим - некоторые доказательства мы опускаем в силу их большой сложности, но каждый такой случай будем оговаривать.
Упражнения
1. В чем суть аксиоматического способа построения теории?
2. Верно ли, что аксиома - это предложение, которое не требует доказательства?
3. Назовите основные понятия школьного курса планиметрии. Вспомните несколько аксиом из этого курса. Свойства каких понятий в них описываются?
4. Дайте определение прямоугольника, выбрав в качестве родового понятие параллелограмма. Назовите три понятия, которые в курсе геометрии должны предшествовать понятию «параллелограмм».
5. Какие предложения называют теоремами? Вспомните, какова логическая структура теоремы и что значит доказать теорему.
Лекция 32.Аксиоматическое построение множества целых неотрицательных чисел
План:
1. Основные понятия и аксиомы Пеано. Определение целого неотрицательного числа
2. Сложение целых неотрицательных чисел. Таблицы сложения и умножения.
3. Умножение целых неотрицательных чисел. Законы сложения и умножения.
Основные понятия и аксиомы. Определение натурального числа
В качестве основного понятия при аксиоматическом построении арифметики натуральных чисел взято отношение «непосредственно следовать за», заданное на непустом множестве N. Известными также считаются понятие множества, элемента множества и другие теоретико-множественные понятия, а также правила логики.
Элемент, непосредственно следующий за элементом а, обозначают а'.
Суть отношения «непосредственно следовать за» раскрывается в следующих аксиомах.
Аксиома 1. В множестве N существует элемент, непосредственно не следующий ни за каким элементом этого множества. Будем называть его единицей и обозначать символом 1.
Аксиома 2. Для каждого элемента а из N существует единственный элемент а¢, непосредственно следующий за а.
Аксиома 3. Для каждого элемента а из N существует не более одного элемента, за которым непосредственно следует а.
Аксиома 4. Всякое подмножество М множества N совпадает с N, если обладает свойствами: 1) 1 содержится в М; 2) из того, что а содержится в М, следует, что и а' содержится в М.
Сформулированные аксиомы часто называют аксиомами Пеано.
Используя отношение «непосредственно следовать за» и аксиомы 1-4, можно дать следующее определение натурального числа.
Определение. Множество N, для элементов которого установлено отношение «непосредственно следовать за», удовлетворяющее аксиомам 1-4, называется множеством натуральных чисел, а его элементы - натуральными числами.
В данном определении ничего не говорится о природе элементов множества N. Значит, она может быть какой угодно. Выбирая в качестве множества N некоторое конкретное множество, на котором задано конкретное отношение «непосредственно следовать за», удовлетворяющее аксиомам 1-4, мы получим модель данной системы аксиом. В математике доказано, что между всеми такими моделями можно установить взаимно однозначное соответствие, сохраняющее отношение «непосредственно следовать за», и все такие модели будут отличаться только природой элементов, их названием и обозначением. Стандартной моделью системы аксиом Пеано является возникший в процессе исторического развития общества ряд чисел:
1,2,3,4,...
Каждое число этого ряда имеет свое обозначение и название, которое мы будем считать известными.
Рассматривая натуральный ряд чисел в качестве одной из моделей аксиом 1-4, следует отметить, что они описывают процесс образования этого ряда, причем происходит это при раскрытии в аксиомах свойств отношения «непосредственно следовать за». Так, натуральный ряд начинается с числа 1 (аксиома 1); за каждым натуральным числом непосредственно следует единственное натуральное число (аксиома 2); каждое натуральное число непосредственно следует не более чем за одним натуральным числом (аксиома 3); начиная от числа 1 и переходя по порядку к непосредственно следующим друг за другом натуральным числам, получаем все множество этих чисел (аксиома 4). Заметим, что аксиома 4 в формализованном виде описывает бесконечность натурального ряда, и на ней основано доказательство утверждений о натуральных числах.
Вообще моделью системы аксиом Пеано может быть любое счетное множество, например:
I, II, III, IIII, ...
о, оо, ооо, оооо, …
один, два, три, четыре, …
Рассмотрим, например, последовательность множеств, в которой множество {оо} есть начальный элемент, а каждое последующее множество получается из предыдущего приписыванием еще одного кружка (рис. 108,а). Тогда N есть множество, состоящее из множеств описанного вида, и оно является моделью системы аксиом Пеано. Действительно, в множестве N существует элемент {оо}, непосредственно не следующий ни за каким элементом данного множества, т.е. выполняется аксиома 1. Если считать обведенные кружки за один элемент (рис. 108.6), то для каждого
а) {о о}, {о о о}, {о о о о}, …
б) { }, { о}, { о о}, …
Рис. 108
Рис. 109
множества А рассматриваемой совокупности существует единственное множество, которое получается из А добавлением одного кружка, т.е. выполняется аксиома 2. Для каждого множества А существует не более одного множества, из которого образуется множество А добавлением одного кружка, т.е. выполняется аксиома 3. Если М Ì N и известно, что множество А содержится в М, следует, что и множество, в котором на один кружок больше, чем в множестве А, также содержится в N, то М ~ N (и значит, выполняется аксиома 4).
Заметим, что в определении натурального числа ни одну из аксиом опустить нельзя - для любой из них можно построить множество, в котором выполнены остальные три аксиомы, а данная аксиома не выполняется. Это положение наглядно подтверждается примерами, приведенными на рисунках 109 и 110. На рисунке 109, а) изображено множество, в котором выполняются аксиомы 2 и 3, но не выполнена аксиома 1 (аксиома 4 не будет иметь смысла, так как в множестве нет элемента, непосредственно не следующего ни за каким другим). На рисунке 109, 6) показано множество, в котором выполнены аксиомы 1, 3 и 4, но за элементом а непосредственно следуют два элемента, а не один, как требуется в аксиоме 2. На рисунке 109, в) изображено множество, в котором выполнены аксиомы 1, 2, 4, но элемент с непосредственно следует как за элементом а, так и за элементом b. На рисунке 110 показано множество, в котором выполнены аксиомы 1, 2, 3, но не выполняется аксиома 4 - множество точек, лежащих на луче, содержит 1 и вместе с
Рис. 110
каждым числом оно содержит непосредственно следующее за ним число, но оно не совпадает со всем множеством точек, показанных на рисунке.
То обстоятельство, что в аксиоматических теориях не говорят об «истинной» природе изучаемых понятий, делает на первый взгляд эти теории слишком абстрактными и формальными, - оказывается, что одним и тем же аксиомам удовлетворяют различные множества объектов и разные отношения между ними. Однако в этой кажущейся абстрактности и состоит сила аксиоматического метода: каждое утверждение, выведенное логическим путем из данных аксиом, применимо к любым множествам объектов, лишь бы в них были определены отношения, удовлетворяющие аксиомам.
Итак, мы начали аксиоматическое построение системы натуральных чисел с выбора основного отношения «непосредственно следовать за» и аксиом, в которых описаны его свойства. Дальнейшее построение теории предполагает рассмотрение известных свойств натуральных чисел и операций над ними. Они должны быть раскрыты в определениях и теоремах, т.е. выведены чисто логическим путем из отношения «непосредственно следовать за», и аксиом 1-4.
Первое понятие, которое мы введем после определения натурального числа, - это отношение «непосредственно предшествует», которое часто используют при рассмотрении свойств натурального ряда.
Определение. Если натуральное число b непосредственно следует за натуральным числом а, то число а называется непосредственно предшествующим (или предшествующим) числу b .
Отношение «предшествует» обладает рядом свойств. Они формулируются в виде теорем и доказываются с помощью аксиом 1-4.
Теорема 1. Единица не имеет предшествующего натурального числа.
Истинность данного утверждения вытекает сразу из аксиомы 1.
Теорема 2. Каждое натуральное число а, отличное от 1, имеет предшествующее число b , такое, что b ' = а.
Доказательство. Обозначим через М множество натуральных чисел, состоящее из числа 1 и из всех чисел, имеющих предшествующее. Если число а содержится в М, то и число а' также есть в N, поскольку предшествующим для а' является число а. Это значит, что множество М содержит 1, и из того, что число а принадлежит множеству М, следует, что и число а' принадлежит М. Тогда по аксиоме 4 множество М совпадает с множеством всех натуральных чисел. Значит, все натуральные числа, кроме 1, имеют предшествующее число.
Отметим, что в силу аксиомы 3 числа, отличные от 1, имеют единственное предшествующее число.
Аксиоматическое построение теории натуральных чисел не рассматривается ни в начальной, ни в средней школе. Однако те свойства отношения «непосредственно следовать за», которые нашли отражение в аксиомах Пеано, являются предметом изучения в начальном курсе математики. Уже в первом классе при рассмотрении чисел первого десятка выясняется, как может быть получено каждое число. При этом используются понятия «следует» и «предшествует». Каждое новое число выступает как продолжение изученного отрезка натурального ряда чисел. Учащиеся убеждаются в том, что за каждым числом идет следующее, и притом только одно, что натуральный ряд чисел бесконечен. И конечно, знание аксиоматической теории поможет учителю методически грамотно организовать усвоение детьми особенности натурального ряда чисел.
Упражнения
1. Можно ли аксиому 3 сформулировать в таком виде: «Для каждого элемента а из N существует единственный элемент, за которым непосредственно следует а»?
2. Выделите условие и заключение в аксиоме 4, запишите их, используя символы Î, =>.
3. Продолжите определение натурального числа: «Натуральным числом называется элемент множества N,...».
Сложение
По правилам построения аксиоматической теории, определение сложения натуральных чисел нужно ввести, используя только отношение «непосредственно следовать за», и понятия «натуральное число» и «предшествующее число».
Предварим определение сложения следующими рассуждениями. Если к любому натуральному числу а прибавить 1, то получим число а', непосредственно следующее за а, т.е. а + 1 = а' и, следовательно, мы получим правило прибавления 1 к любому натуральному числу. Но как прибавлять к числу а натуральное число b, отличное от 1? Воспользуемся следующим фактом: если известно, что 2 + 3 = 5, то сумма 2+4 равна числу 6, которое непосредственно следует за числом 5. Происходит так потому, что в сумме 2 + 4 второе слагаемое есть число, непосредственно следующее за числом 3. Таким образом, сумму а + b' можно найти, если известна сумма а + b . Эти факты и положены в основу определения сложения натуральных чисел в аксиоматической теории. Кроме того, в нем используется понятие алгебраической операции.
Определение. Сложением натуральных чисел называется алгебраическая операция, обладающая свойствами:
1) (" а Î N) а + 1 = а', 2)(" а, b Î N) а + b' =(а + b)'.
Число а + b называется суммой чисел а и b , а сами числа аи b - слагаемыми.
Как известно, сумма любых двух натуральных чисел представляет собой также натуральное число, и для любых натуральных чисел а и b сумма а + b - единственна. Другими словами, сумма натуральных чисел существует и единственна. Особенностью определения является то, что заранее не известно, существует ли алгебраическая операция, обладающая указанными свойствами, а если существует, то единственна ли она? Поэтому при аксиоматическом построении теории натуральных чисел доказывают следующие утверждение:
Теорема 3.Сложение натуральных чисел существует и оно единственно.
Эта теорема состоит из двух утверждений (двух теорем):
1) сложение натуральных чисел существует;
2) сложение натуральных чисел единственно.
Как правило, существование и единственность связывают вместе, но они чаще всего не зависят друг от друга. Существование какого-либо объекта не подразумевает его единственность. (Например, если вы говорите, что у вас есть карандаш, то это не значит, что он только один.) Утверждение о единственности означает, что не может существовать двух объектов с заданными свойствами. Единственность часто доказывается методом от противного: предполагают, что имеется два объекта, удовлетворяющих данному условию, а затем выстраивают цепочку дедуктивных умозаключений, приводящую к противоречию.
Чтобы убедиться в истинности теоремы 3, сначала докажем, что если в множестве N существует операция, обладающая свойствами 1 и 2, то эта операция единственная; затем докажем, что операция сложения со свойствами 1 и 2 существует.
Доказательство единственности сложения. Допустим, что в множестве N существует две операции сложения, обладающие свойствами 1 и 2. Одну из них обозначим знаком + , а другую - знаком Å. Для этих операций имеем:
1) а+1=а'; 1) аÅ 1=а';
2) а + b ' = (а + b )' 2) а Å b' = (а Å b)'.
Докажем, что если
(" а, b Î N) а + b = а Å b . (1)
Пусть число а выбрано произвольно, а b принимает различные натуральные значения. Обозначим через М множество всех тех и только тех чисел b , для которых равенство (1) истинно.
Нетрудно убедиться в том, что 1 Î М. Действительно, из того, что а + 1= а'= аÅ 1 следует, что а + 1 = аÅ 1.
Докажем теперь, что если b Î М, то b'Î М, т.е., если а + b = а Å b, то а + b ' =
а Å b'. Так как а + b= а Å b, то по аксиоме 2 (а + b )' = (а Å b)' и тогда а + b ' = (а + b )' =(а Å b)' = а Å b'. Поскольку множество М содержит 1 и вместе с каждым числом b содержит и число b', топо аксиоме 4, множество М совпадает с N, а значит, равенство (1) истинно для любого натурального числа b. Так как число а было выбрано произвольно, то равенство (1) верно при любых натуральных числах а и b, то есть операции + и Å на множестве N могут отличаться друг от друга только обозначениями.
Доказательство существования сложения. Покажем, что алгебраическая операция, обладающая свойствами 1 и 2, указанными в определении сложения, существует.
Пусть М - множество тех и только тех чисел а, для которых можно определить а + b так, чтобы были выполнены условия 1 и 2. Покажем, что 1 Î М. Для этого при любом b положим
1 + b = b '. (2)
Тогда:
1) 1 + 1 =1'- по правилу (2), т.е выполняется равенство а + 1 = а при а = 1.
2) 1 + b ' = (b ')' = (1 + b)' - по правилу (2.), т.е. выполняется равенство а + b ' = (а + b)' при а = 1.
Итак, 1 принадлежит множеству М.
Предположим, что а принадлежит М. Исходя из этого предположения, покажем, что и а' содержится в М. т.е. что можно определить сложение а и любого числа b так, чтобы выполнялись условия 1 и 2.
Для этого положим:
а' + b = (а + b) ' (3)
Так как по предположению число а + b определено, то по аксиоме 2 единственным образом определяется и число (а + b )'. Проверим, что при этом выполняются условия 1 и 2:
1) а' + 1 = (а + 1)' = (а')'. Таким образом, а' + 1 = (а')'.
2) а' + b' = (а + b')' = ((а + b)') ' = (а' + b')'. Таким образом, а' + b' = (а' + b)'.
Итак, показали, что множество М содержит 1 и вместе с каждым числом а содержит число а'. По аксиоме 4, заключаем, что множество М есть множество натуральных чисел. Таким образом, существует правило, которое позволяет для любых натуральных чисел а и b однозначно найти такое натуральное число а + b, что выполняются свойства 1 и 2. сформулированные в определении сложения.
Покажем, как из определения сложения и теоремы 3 можно вывести хорошо известную всем таблицу сложения однозначных чисел.
Условимся о следующих обозначениях: 1' = 2; 2' = 3; 3' = 4; 4' = 5 и т.д.
Составляем таблицу в такой последовательности: сначала к любому однозначному натуральному числу прибавляем единицу, затем число два, потом - три и т.д.
1 + 1 = 1' на основании свойства 1 определения сложения. Но 1' мы условились обозначать 2. следовательно, 1+1=2.
Аналогично 2+1 = 2' = 3; 3 + 1 = 3' = 4 и т.д.
Рассмотрим теперь случаи, связанные с прибавлением к любому однозначному натуральному числу числа 2.
1+2=1 + 1' - воспользовались принятым обозначением. Но 1 + 1' = (1 + !)' согласно свойству 2 из определения сложения, 1 + 1 - это 2, как было установлено выше. Таким образом,
1 + 2 = 1 + 1' = (1 + 1)' = 2' = 3.
Аналогично 2 + 2= 2 + 1' = (2 + 1)' = 3' = 4; 3 + 2 = 3 + 1' = (3 + 1)' = 4' = 5 и т.д.
Если продолжить этот процесс, получим всю таблицу сложения однозначных чисел.
Следующий шаг в аксиоматическом построении системы натуральных чисел - это доказательство свойств сложения, причем первым рассматривается свойство ассоциативности, затем коммутативности и др. Доказательства теорем следует рассмотреть как упражнения.
Теорема 4. (" а, b, с Î N) (а + b) + с = а + (b + с).
Теорема 5. (" а, b Î N) а + b = b + а.
Теорема 6. (" а, b Î N) а + b ¹ b.
Все доказанные свойства изучаются в начальном курсе математики и используются для преобразования выражений.
Упражнения
1. Верно ли, что каждое натуральное число получается из предыдущего прибавлением единицы?
2. Используя определение сложения, найдите значение выражений:
а) 2 + 3; б) 3 + 3; в) 4 + 3.
3. Какие преобразования выражений можно выполнять, используя
свойство ассоциативности сложения?
4. Выполните преобразование выражения, применив ассоциативное свойство сложения:
а) (12 + 3)+17; б) 24+ (6+19); в) 27 + 13+18.
5. Докажите, что (" а, b Î N) а + b ¹ а.
6. Выясните, как формулируются в различных учебниках математики для начальной школы:
а) коммутативное свойство сложения;
б) ассоциативное свойство сложения.
7. В одном из учебников для начальной школы рассматривается
правило прибавления числа к сумме на конкретном примере (4 + 3) + 2
и предлагаются следующие пути нахождения результата:
а) (4 + 3) + 2 = 7 + 2 = 9;
б) (4 + 3) + 2 = (4 + 2) + 3 = 6 + 3 = 9;
в) (4 + 3) + 2 = 4 + (2 + 3) = 4 + 5 =9.
Обоснуйте выполненные преобразования. Можно ли утверждать, что правило прибавления числа к сумме есть следствие ассоциативного свойства сложения?
8. Известно, что а + b= 17. Чему равно:
а) а + (b + 3); b) (а + 6)+ b; в) (13 + b) + а?
9. Опишите возможные способы вычисления значения выражения вида
а + b + с. Дайте обоснование этим способам и проиллюстрируйте их на конкретных примерах.
Умножение
По правилам построения аксиоматической теории определить умножение натуральных чисел можно, используя отношение «непосредственно следовать за» и понятия, введенные ранее.
Предварим определение умножения следующими рассуждениями.
Если любое натуральное число а умножить на 1. то получится а, т.е. имеет место равенство а × 1 = а и мы получаем правило умножения любого натурального числа на 1. Но как умножать число а на натуральное число b, отличное от 1? Воспользуемся следующим фактом:
если известно, что 7 × 5 = 35, то для нахождения произведения 7 × 6 достаточно к 35 прибавить 7, так как 7 × 6 = 7 × (5 + I) = 7 × 5 + 7. Таким образом, произведение а × b' можно найти, если известно произведение: а × b = а × b + а.
Отмеченные факты и положены в основу определения умножения натуральных чисел. Кроме того, в нем используется понятие алгебраической операции.
Определение. Умножением натуральных чисел называется алгебраическая операция, обладающая свойствами:
1) (" а Î N) а× 1 а.
2) (" а, b Î N) а× b' = а × b + а.
Число а × b называется произведением чисел а и b, а сами числа а и b - множителями.
Особенностью данного определения, так же как и определения сложения натуральных чисел, является то, что заранее неизвестно, существует ли алгебраическая операция, обладающая указанными свойствами, а если существует, то единственная ли она. В связи с этим возникает необходимость в доказательстве этого факта..
Теорема 7. Умножение натуральных чисел существует, и оно единственно.
Доказательство этой теоремы аналогично доказательству теоремы 3.
Используя определение умножения, теорему 7 и таблицу сложения, можно вывести таблицу умножения однозначных чисел. Делаем это в такой последовательности: сначала рассматриваем умножение на 1, затем на 2 и т.д.
Легко видеть, что умножение на 1 выполняется по свойству 1 в определении умножения: 1 • 1 = 1; 2 •1 = 2; 3 •1 = 3 и т.д.
Рассмотрим теперь случаи умножения на 2: 1 • 2 = 1 • 1' = 1 • 1 + 1 = 1 + 1 = 2- переход от произведения 1 • 2 к произведению 1 • 1' осуществлен согласно принятым ранее обозначениям; переход от выражения 1 • 1' к выражению 1 + 1 - на основе второго свойства умножения; произведение 1 • 1 заменено числом 1 в соответствии с уже полученным результатом в таблице; и, наконец, значение выражения 1 + 1 найдено в соответствии с таблицей сложения. Аналогично: 2 • 2 = 2 • 1' = 2 • I + 2 = 2 + 2 = 4; 3 • 2 = 3 • 1' = 3 • 1 + 3 = 3 + 3 = 6.
Если продолжить этот процесс, получим всю таблицу умножения однозначных чисел.
Как известно, умножение натуральных чисел коммутативно, ассоциативно и дистрибутивно относительно сложения. При аксиоматическом построении теории удобно доказывать эти свойства, начиная с дистрибутивности.
Но в связи с тем. что свойство коммутативности будет доказано позже, необходимо рассматривать дистрибутивность справа и слева относительно сложения.
Теорема 8. (" а, b, с Î N) (а + b) • с = а • с + b • с.
Теорема 9. (" а, b, с Î N) с •(а + b) = с • а + с • b
Это свойство дистрибутивности слева относительно сложения. Доказывается оно аналогично тому, как это сделано для дистрибутивности справа.
Теорема 10. (" а, b, с Î N) (а • b) • с = а • ( b • с).
Это свойство ассоциативности умножения. Его доказательство основывается на определении умножения и теоремах 4- 9.
Теорема 11.(" а, b Î N) а • b = b • а.
Доказательство этой теоремы по форме аналогично доказательству коммутативного свойства сложения.
Поход к умножению, рассматриваемый в аксиоматической теории, является основой обучения умножению в начальной школе. Умножение на 1, как правило, определяется, а второе свойство умножения иcпользуется при составлении таблицы умножения однозначных чисел и вычислениях.
В начальном курсе изучаются все рассмотренные нами свойства умножения: и коммутативность, и ассоциативность, и дистрибутивность.
Упражнения
1.. Используя определение умножения, найдите значения выражений:
а) 3 • 3; 6) 3 • 4; в) 4 • 3.
2. Запишите свойство дистрибутивности умножения слева относительно сложения и докажите его. Какие преобразования выражений возможны на его основе? Почему возникла необходимость в рассмотрении дистрибутивности умножения слева и справа относительно сложения?
3. Докажите свойство ассоциативности умножения натуральных чисел. Какие преобразования выражений возможны на его основе? Изучается ли это свойство в начальной школе?
4. Докажите свойство коммутативности умножения. Приведите примеры его использования в начальном курсе математики.
5. Какие свойства умножения могут быть использованы при нахождении значения выражения:
а) 5 • (10 + 4); 6)125 • 15 • 6; в) (8 • 379) • 125?
6. Известно, что 37 • 3 = 111. Используя это равенство, вычислите:
а) 37 • 18; 6) 185 • 12.
Все выполненные преобразования обоснуйте.
7. Определите значение выражения, не выполняя письменных вычислений. Ответ обоснуйте:
а) 8962 • 8 + 8962 • 2; б) 63402 • 3 + 63402 • 97; в) 849 +849 • 9.
8.. Какие свойства умножения будут использовать учащиеся начальных классов, выполняя следующие задания:
Можно ли, не вычисляя, сказать, значения каких выражений будут одинаковыми:
а) 3 • 7 + 3 • 5; 6) 7 • (5 + 3): в) (7 + 5) • 3?
Верны ли равенства:
а) 18 • 5 • 2 = 18 • (5 • 2); в) 5 • 6 + 5 • 7 = (6 + 7) • 5;
б) (3 • 10) •17 = 3 • 10 • 17; г) 8 • (7 + 9) = 8 • 7 + 9 • 8?
Можно ли, не выполняя вычислений, сравнить значения выражений:
а) 70 • 32 + 9 • 32 ...79 • 30 + 79 • 2; 6) 87 • 70 + 87 • 8 ... 80 • 78 + 7 • 78?
Лекция 33.Вычитание и деление целых неотрицательных чисел
План:
1. Упорядоченность множества натуральных чисел.
2. Определение вычитания целых неотрицательных чисел
3. Деление целых неотрицательных чисел. Невозможность деления на нуль. Деление с остатком.
Дата добавления: 2016-05-11; просмотров: 5511;