Уровни изоляции электрооборудования

Ответы к экзамену по Изоляции от перенапряжения в электроэнергетических установках

1)Цели и задачи курса «Изоляция и перенапряжения в электроэнергетических системах»

Ответ:В развитии электроэнергетики России важное место занимает применение высоких напряжений для передачи электрической энергии на большие расстояния. Мощность отдельных тепловых электростанций достигла 3800 МВт, атомных – 3000 МВт и гидравлических – 6000 МВт. При такой концентрации мощностей большое значение имеет надежность работы линий электропередачи и всего комплекса оборудования: генераторов, трансформаторов, коммутационной аппаратуры, компенсирующих устройств и др. В значительной мере решение этой задачи обеспечивается надежной работой электрических систем и оборудования при постоянно воздействующих на изоляцию рабочих напряжениях или кратковременно возникающих перенапряжениях. Изоляция электрических установок должна быть вполне надежной при воздействии рабочего напряжения (переменного или постоянного) и должна противостоять всем видам перенапряжений. С другой стороны, возможно ограничение перенапряжений с целью снижения уровней изоляции. Обе указанные проблемы являются основными в технике высоких напряжений. Соответственно в курсе «Изоляция и перенапряжения в электрических системах» изучаются вопросы, относящиеся к конструированию, технологии изготовления, испытаниям и эксплуатации изоляции электрических установок и причинам возникновения перенапряжений в электрических сетях и методам их ограничения, т.е. координация изоляции. Под уровнем изоляции понимают значения испытательных напряжений, которые эти элементы сетей выдерживают без повреждения. Испытательные напряжения, в свою очередь, выбирают исходя из тех воздействующих перенапряжений, которым подвергаются элементы сети в процессе эксплуатации. Важным вопросом в курсе является изучение форм и величин перенапряжений и разработка способов их ограничения до уровней, при которых нарушения изоляционных элементов сетей становятся редким явлением, в той мере, в которой это диктуется технико-экономическими соображениями. Структура курса со связями между разделами показана графически на рис. 1.

Рис. 1. Структура курса «Изоляция и перенапряжения

в электрических системах»

Изоляция электрических установок постоянно находится под воздействием рабочего напряжения. Среднее междуфазное напряжение установки называется номинальным напряжением. Шкала номинальных напряжений линий электропередачи и оборудования приведена в табл. 1. В эксплуатации напряжения отличаются от номинального вследствие падений напряжений на элементах установки, вызываемыми проходящими токами, и регулирования напряжения источников. Местные распределительные сети (воздушные и кабельные) рассчитаны на напряжение до 35 кВ. Средние напряжения 110…220 кВ используются в районных сетях, по которым передаются мощности на расстояния от нескольких десятков до 100…150 км. Диапазон напряжений 330 кВ и выше относится к сверхвысоким напряжениям (СВН) и электрическая энергия передается по ним на расстояния до 1000 км. В табл. 1 указаны наибольшие рабочие напряжения, допустимые на оборудовании данного номинального напряжения. Ограничение накладывается изоляцией оборудования, а также насыщением магнитопроводов трансформаторов (силовых и измерительных). Допустимые рабочие напряжения на изоляции линий рассчитываются, исходя из условия загрязнения воздуха в районе прохождения линии. Допустимые рабочие напряжения на линиях ограничиваются также допустимыми потерями на корону и уровнем радиопомех при коронировании. В нормальных рабочих режимах на изоляцию воздействует фазное напряжение. В переходных режимах, возникающих при включениях и отключениях элементов сети, коротких замыканиях и в некоторых схемах, в основном при одностороннем включении линий, в установившихся режимах возникают так называемые внутренние перенапряжения. При грозовых разрядах в сетях возникают атмосферные перенапряжения. Термином «перенапряжения» обычно обозначают повышения напряжения, которые могут представлять опасность для изоляции. Так как возможность нарушения изоляции зависит от состояния самой изоляции, то нельзя указать определенной нижней границы, при которой повышение напряжения становится перенапряжением, и, следовательно, термин перенапряжение имеет качественный характер. Величины перенапряжений характеризуются их кратностью по отношению к Uф: k = Uпер/Uф. Кратность внутренних перенапряженийявляется произведением двух коэффициентов: Kп = kудkу, где kуд – ударный коэффициент, представляет собой отношение максимального напряжения переходного процесса к установившемуся напряжению (вынужденной составляющей переходного процесса); kу – отношение установившегося напряжения к наибольшему рабочему фазному напряжению. Чем выше номинальное напряжение сети, тем меньшее значение кратности k нормируется для изоляции. Это объясняется тем, что с ростом k растет и доля стоимости изоляции в общей стоимости оборудования и линий, и для их удешевления необходимо снижение уровня допустимых перенапряжений. Для развития перенапряжений существенное значение имеет режим нейтрали системы. Системы могут иметь эффективно заземленную, изолированную или резонансно-заземленную нейтраль. Воздушные промежутки и изоляторы, электрические характеристики которых зависят от атмосферных условий, относят к внешней изоляцииэлектроустановок, авнутренняя изоляция электрооборудования практически не подвержена влиянию атмосферных условий. Эта изоляция обмоток трансформаторов и электрических машин, изоляция кабелей, герметизированная изоляция вводов и силовых конденсаторов, изоляция между контактами выключателя в отключенном состоянии и т.д. Внутренняя изоляция представляет собой обычно комбинацию твердого и жидкого диэлектриков (например, в трансформаторах) или твердого и газообразного диэлектриков (например, в кабелях). Применяется также изоляция и одного вида. Особенностью внутренней изоляции является старение, т.е. ухудшение электрических характеристик изоляции в процессе эксплуатации. Очень трудно предотвратить возникновение в изоляции микроскопических разрядов. Например, вследствие изменения температурного режима, вызванного колебаниями тока нагрузки, в бумажно-масляной изоляции кабеля образуются газовые пузырьки, в которых возникают частичные разряды. На острых кромках электродов, на крепежных деталях аппаратуры возникает коронный разряд. Под действием этих микроскопических разрядов изоляция разрушается, химически разлагается, загрязняясь продуктами разложения. Вследствие диэлектрических потерь изоляция нагревается. При затрудненном теплоотводе, что характерно для монолитной изоляции, такой, как твердая, чрезмерный нагрев может привести к тепловому пробою изоляции. Возможности теплоотвода или даже специального охлаждения приходится учитывать при проектировании внутренней изоляции. Пробой твердой или комбинированной изоляции – явление необратимое. Жидкая и газовая изоляция самовосстанавливаются, однако, пробои приводят к ухудшению их характеристик. Электрическая прочность как внутренней, так и внешней изоляции зависит от формы воздействующего напряжения. Не вдаваясь в детали, можно сказать, что пробивное напряжение изоляции тем выше, чем короче время воздействия напряжения. Такую же зависимость от времени имеют и сами воздействующие напряжения: чем меньше время воздействия, тем они больше.

Уровни изоляции электрооборудования

Ответ:Уровень изоляции электрооборудования — это нормированные испытательные напряжения грозовых и коммутационных импульсов (для электрооборудования 330 кВ и выше), грозовых импульсов и кратковременного напряжения промышленной частоты, (для электрооборудования до 220 кВ), отнесенные к определенным условиям испытания.
Основой для нормирования испытательных напряжений является требование о том, чтобы данное электрооборудование в целом — все элементы его внутренней и внешней изоляции — в эксплуатационных условиях выдерживало грозовые и внутренние перенапряжения, принятые для электрооборудования в качестве расчетных воздействий на его зажимах. Согласно стандарту МЭК 71.1 «Координации изоляции», классификация воздействующих на изоляцию напряжений с точки зрения их форм и длительностей, а не природы происхождения. Испытательные напряжения выбираются как эквивалент этим перенапряжениям с учетом свойств внутренней и внешней изоляции, обуславливающих различие ее прочности в нормальных условиях испытания и в эксплуатации. При установлении испытательных напряжений внутренней изоляции учитывается снижение ее электрический прочности при перенапряжениях в условиях эксплуатации по сравнению с прочностью при типовом испытании неработавшей изоляции. Для трансформаторов (силовых и напряжения) и реакторов (шунтирующих и заземляющих) принимается во внимание повышение перенапряжений на элементах изоляции обмоток при воздействии импульсов в эксплуатации на возбужденный трансформатор или реактор по сравнению с перенапряжениями при отсутствии возбуждения трансформатора во время проведения импульсного испытания. Для внешней (воздушной) изоляции учитывается снижение разрядных (выдерживаемых) напряжений при атмосферных условиях, возможных в эксплуатации (высота установки электрооборудования 1000 м над уровнем моря), по сравнению с разрядными напряжениями при нормальных атмосферных условиях.








Дата добавления: 2016-04-23; просмотров: 3434;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.